网络系统中的学习

J. Shamma
{"title":"网络系统中的学习","authors":"J. Shamma","doi":"10.1109/CDC.2013.6760267","DOIUrl":null,"url":null,"abstract":"The setup of learning in networked systems is a collection of decision making components with local information and limited communication interacting to balance a collective objective with local incentives. This talk presents a tutorial overview of learning in such settings from a game theoretic perspective. While game theory is well known for its traditional role as a modeling framework in social sciences, it is seeing growing interest as a design approach for distributed architecture control. In game theoretic learning, the focus shifts away from equilibrium solution concepts and towards the dynamics of how decision makers reach equilibrium. This talk presents a sampling of results in game theoretic learning from its origins as a “descriptive” model for social systems to its “prescriptive” role as an approach to designing networked control. The talk presents also presents various examples from distributed coordination.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning in networked systems\",\"authors\":\"J. Shamma\",\"doi\":\"10.1109/CDC.2013.6760267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The setup of learning in networked systems is a collection of decision making components with local information and limited communication interacting to balance a collective objective with local incentives. This talk presents a tutorial overview of learning in such settings from a game theoretic perspective. While game theory is well known for its traditional role as a modeling framework in social sciences, it is seeing growing interest as a design approach for distributed architecture control. In game theoretic learning, the focus shifts away from equilibrium solution concepts and towards the dynamics of how decision makers reach equilibrium. This talk presents a sampling of results in game theoretic learning from its origins as a “descriptive” model for social systems to its “prescriptive” role as an approach to designing networked control. The talk presents also presents various examples from distributed coordination.\",\"PeriodicalId\":415568,\"journal\":{\"name\":\"52nd IEEE Conference on Decision and Control\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"52nd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2013.6760267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6760267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络系统中学习的设置是具有局部信息和有限通信的决策组件的集合,这些组件相互作用以平衡集体目标和局部激励。本讲座从博弈论的角度介绍了在这种情况下学习的教程概述。虽然博弈论以其在社会科学中作为建模框架的传统角色而闻名,但它作为分布式架构控制的设计方法也越来越受到关注。在博弈论学习中,重点从平衡解决方案的概念转移到决策者如何达到平衡的动态。本演讲将展示博弈论学习的结果样本,从其作为社会系统的“描述性”模型的起源到其作为设计网络控制方法的“规定性”角色。这次演讲还展示了分布式协调的各种例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning in networked systems
The setup of learning in networked systems is a collection of decision making components with local information and limited communication interacting to balance a collective objective with local incentives. This talk presents a tutorial overview of learning in such settings from a game theoretic perspective. While game theory is well known for its traditional role as a modeling framework in social sciences, it is seeing growing interest as a design approach for distributed architecture control. In game theoretic learning, the focus shifts away from equilibrium solution concepts and towards the dynamics of how decision makers reach equilibrium. This talk presents a sampling of results in game theoretic learning from its origins as a “descriptive” model for social systems to its “prescriptive” role as an approach to designing networked control. The talk presents also presents various examples from distributed coordination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bandits with budgets Decentralized control of partially observable Markov decision processes Torque allocation in electric vehicles with in-wheel motors: A performance-oriented approach A validated integration algorithm for nonlinear ODEs using Taylor models and ellipsoidal calculus Graphical FPGA design for a predictive controller with application to spacecraft rendezvous
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1