多云工作流的数据感知资源调度:一种细粒度模拟方法

Wei Tang, John Jenkins, Folker Meyer, R. Ross, R. Kettimuthu, L. Winkler, Xi Yang, T. Lehman, N. Desai
{"title":"多云工作流的数据感知资源调度:一种细粒度模拟方法","authors":"Wei Tang, John Jenkins, Folker Meyer, R. Ross, R. Kettimuthu, L. Winkler, Xi Yang, T. Lehman, N. Desai","doi":"10.1109/CloudCom.2014.19","DOIUrl":null,"url":null,"abstract":"Cloud infrastructures have seen increasing popularity for addressing the growing computational needs of today's scientific and engineering applications. However, resource management challenges exist in the elastic cloud environment, such as resource provisioning and task allocation, especially when data movement between multiple domains plays an important role. In this work, we study the impact of data-aware resource management and scheduling on scientific workflows in multicloud environments. We develop a workflow simulator based on a network simulation framework for fine-grained simulation for workflow computation and data movement. Using the workload traces from a production metagenomic data analysis service, we evaluate different resource scheduling mechanisms, including proposed data-aware scheduling policies under various resource and bandwidth configurations. The results of this work are expected to answer questions about how to provision computing resources for certain workloads efficiently and how to place tasks across multidomain clouds in order to reduce data movement costs for overall improved system performance.","PeriodicalId":249306,"journal":{"name":"2014 IEEE 6th International Conference on Cloud Computing Technology and Science","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Data-Aware Resource Scheduling for Multicloud Workflows: A Fine-Grained Simulation Approach\",\"authors\":\"Wei Tang, John Jenkins, Folker Meyer, R. Ross, R. Kettimuthu, L. Winkler, Xi Yang, T. Lehman, N. Desai\",\"doi\":\"10.1109/CloudCom.2014.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud infrastructures have seen increasing popularity for addressing the growing computational needs of today's scientific and engineering applications. However, resource management challenges exist in the elastic cloud environment, such as resource provisioning and task allocation, especially when data movement between multiple domains plays an important role. In this work, we study the impact of data-aware resource management and scheduling on scientific workflows in multicloud environments. We develop a workflow simulator based on a network simulation framework for fine-grained simulation for workflow computation and data movement. Using the workload traces from a production metagenomic data analysis service, we evaluate different resource scheduling mechanisms, including proposed data-aware scheduling policies under various resource and bandwidth configurations. The results of this work are expected to answer questions about how to provision computing resources for certain workloads efficiently and how to place tasks across multidomain clouds in order to reduce data movement costs for overall improved system performance.\",\"PeriodicalId\":249306,\"journal\":{\"name\":\"2014 IEEE 6th International Conference on Cloud Computing Technology and Science\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 6th International Conference on Cloud Computing Technology and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudCom.2014.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 6th International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2014.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

云基础设施在满足当今科学和工程应用日益增长的计算需求方面越来越受欢迎。但是,在弹性云环境中存在资源管理方面的挑战,例如资源分配和任务分配,特别是当多个域之间的数据移动起重要作用时。在这项工作中,我们研究了数据感知资源管理和调度对多云环境下科学工作流的影响。我们开发了一个基于网络仿真框架的工作流模拟器,用于工作流计算和数据移动的细粒度仿真。使用来自生产宏基因组数据分析服务的工作负载跟踪,我们评估了不同的资源调度机制,包括在各种资源和带宽配置下提出的数据感知调度策略。预计这项工作的结果将回答有关如何有效地为某些工作负载提供计算资源以及如何跨多域云放置任务以降低数据移动成本以提高整体系统性能的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Aware Resource Scheduling for Multicloud Workflows: A Fine-Grained Simulation Approach
Cloud infrastructures have seen increasing popularity for addressing the growing computational needs of today's scientific and engineering applications. However, resource management challenges exist in the elastic cloud environment, such as resource provisioning and task allocation, especially when data movement between multiple domains plays an important role. In this work, we study the impact of data-aware resource management and scheduling on scientific workflows in multicloud environments. We develop a workflow simulator based on a network simulation framework for fine-grained simulation for workflow computation and data movement. Using the workload traces from a production metagenomic data analysis service, we evaluate different resource scheduling mechanisms, including proposed data-aware scheduling policies under various resource and bandwidth configurations. The results of this work are expected to answer questions about how to provision computing resources for certain workloads efficiently and how to place tasks across multidomain clouds in order to reduce data movement costs for overall improved system performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Performance Impact of Virtualization on an HPC Cloud Performance Study of Spindle, A Web Analytics Query Engine Implemented in Spark Role of System Modeling for Audit of QoS Provisioning in Cloud Services Dependability Analysis on Open Stack IaaS Cloud: Bug Anaysis and Fault Injection Delegated Access for Hadoop Clusters in the Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1