基于终身机器学习的产品评审质量分析

Xianbin Hong, S. Guan, Prudence W. H. Wong, Nian Xue, K. Man, Dawei Liu, Zhen Li
{"title":"基于终身机器学习的产品评审质量分析","authors":"Xianbin Hong, S. Guan, Prudence W. H. Wong, Nian Xue, K. Man, Dawei Liu, Zhen Li","doi":"10.1145/3503047.3503154","DOIUrl":null,"url":null,"abstract":"Reading product reviews is the best way to know the product quality in online shopping. Due to the huge review number, customers and merchants need product analysis algorithms to help with quality analysis. Current researches use sentiment analysis to replace quality analysis. However, it has a significant drawback. This paper proves that the sentiment-based analysis algorithms are insufficient for online product quality analysis. They ignore the relationship between aspect and its description and cannot detect noise (unrelated description). So this paper raises a Lifelong Product Quality Analysis algorithm LPQA to learn the relationship between aspects. It can detect the noise and improve the opinion classification performance. It improves the classification F1 score to 77.3% on the Amazon iPhone dataset and 69.99% on Semeval Laptop dataset.","PeriodicalId":190604,"journal":{"name":"Proceedings of the 3rd International Conference on Advanced Information Science and System","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lifelong Machine Learning-Based Quality Analysis for Product Review\",\"authors\":\"Xianbin Hong, S. Guan, Prudence W. H. Wong, Nian Xue, K. Man, Dawei Liu, Zhen Li\",\"doi\":\"10.1145/3503047.3503154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reading product reviews is the best way to know the product quality in online shopping. Due to the huge review number, customers and merchants need product analysis algorithms to help with quality analysis. Current researches use sentiment analysis to replace quality analysis. However, it has a significant drawback. This paper proves that the sentiment-based analysis algorithms are insufficient for online product quality analysis. They ignore the relationship between aspect and its description and cannot detect noise (unrelated description). So this paper raises a Lifelong Product Quality Analysis algorithm LPQA to learn the relationship between aspects. It can detect the noise and improve the opinion classification performance. It improves the classification F1 score to 77.3% on the Amazon iPhone dataset and 69.99% on Semeval Laptop dataset.\",\"PeriodicalId\":190604,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Advanced Information Science and System\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Advanced Information Science and System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503047.3503154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Advanced Information Science and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503047.3503154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在网上购物时,阅读产品评论是了解产品质量的最好方法。由于评论数量庞大,客户和商家需要产品分析算法来帮助进行质量分析。目前的研究都是用情感分析来代替质量分析。然而,它有一个明显的缺点。本文证明了基于情感的分析算法在在线产品质量分析中是不够的。忽略了方面与描述之间的关系,无法检测到噪声(无关描述)。为此,本文提出了一种终身产品质量分析算法LPQA来学习各方面之间的关系。它可以检测噪声,提高意见分类的性能。它将亚马逊iPhone数据集的分类F1分数提高到77.3%,在Semeval Laptop数据集上提高到69.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lifelong Machine Learning-Based Quality Analysis for Product Review
Reading product reviews is the best way to know the product quality in online shopping. Due to the huge review number, customers and merchants need product analysis algorithms to help with quality analysis. Current researches use sentiment analysis to replace quality analysis. However, it has a significant drawback. This paper proves that the sentiment-based analysis algorithms are insufficient for online product quality analysis. They ignore the relationship between aspect and its description and cannot detect noise (unrelated description). So this paper raises a Lifelong Product Quality Analysis algorithm LPQA to learn the relationship between aspects. It can detect the noise and improve the opinion classification performance. It improves the classification F1 score to 77.3% on the Amazon iPhone dataset and 69.99% on Semeval Laptop dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing the Popularity of Testing Careers among Canadian, Indian, Chinese, and Malaysian Students Radar Working Mode Recognition Method Based on Complex Network Analysis Unsupervised Barcode Image Reconstruction Based on Knowledge Distillation Research on the information System architecture design framework and reference resources of American Army Rearch on quantitative evaluation technology of equipment battlefield environment adaptability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1