{"title":"RSA素数乘法中基于机器学习的剖析攻击方法","authors":"Han-Byeol Park, Bo-Yeon Sim, Dong‐Guk Han","doi":"10.1145/3440943.3444730","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a machine learning-based profiling attack on the prime multiplication operation of RSA's key generation algorithm. The proposed attack takes advantage of the fact that a prime word value, which is the data storage unit, is loaded in the process of the multiplication operation for generating a modulus. We selected a commonly used product-scanning method as a multiplication algorithm. Then we collected the power consumption traces and constructed a profile of the secret prime value based on machine learning. In addition, the success rate of the attack was measured within a single trace to perform a realistic attack during the key generation operation. The secret prime values were derived with a maximum success rate of 99.8% in a single trace. Based on this, this paper suggests that if the secret value is an operand of the multiplication operation, there may be vulnerability against side-channel attacks because of the characteristics of the multiplication algorithm.1","PeriodicalId":310247,"journal":{"name":"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications","volume":"328 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Profiling Attack Method in RSA Prime Multiplication\",\"authors\":\"Han-Byeol Park, Bo-Yeon Sim, Dong‐Guk Han\",\"doi\":\"10.1145/3440943.3444730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a machine learning-based profiling attack on the prime multiplication operation of RSA's key generation algorithm. The proposed attack takes advantage of the fact that a prime word value, which is the data storage unit, is loaded in the process of the multiplication operation for generating a modulus. We selected a commonly used product-scanning method as a multiplication algorithm. Then we collected the power consumption traces and constructed a profile of the secret prime value based on machine learning. In addition, the success rate of the attack was measured within a single trace to perform a realistic attack during the key generation operation. The secret prime values were derived with a maximum success rate of 99.8% in a single trace. Based on this, this paper suggests that if the secret value is an operand of the multiplication operation, there may be vulnerability against side-channel attacks because of the characteristics of the multiplication algorithm.1\",\"PeriodicalId\":310247,\"journal\":{\"name\":\"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications\",\"volume\":\"328 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3440943.3444730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440943.3444730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning-Based Profiling Attack Method in RSA Prime Multiplication
In this paper, we propose a machine learning-based profiling attack on the prime multiplication operation of RSA's key generation algorithm. The proposed attack takes advantage of the fact that a prime word value, which is the data storage unit, is loaded in the process of the multiplication operation for generating a modulus. We selected a commonly used product-scanning method as a multiplication algorithm. Then we collected the power consumption traces and constructed a profile of the secret prime value based on machine learning. In addition, the success rate of the attack was measured within a single trace to perform a realistic attack during the key generation operation. The secret prime values were derived with a maximum success rate of 99.8% in a single trace. Based on this, this paper suggests that if the secret value is an operand of the multiplication operation, there may be vulnerability against side-channel attacks because of the characteristics of the multiplication algorithm.1