电信基站电动汽车充电与坡道双向充电技术-商业成本-效益研究与调度-预约系统

A. Junid, E. Yap, Pek-Kim Ng
{"title":"电信基站电动汽车充电与坡道双向充电技术-商业成本-效益研究与调度-预约系统","authors":"A. Junid, E. Yap, Pek-Kim Ng","doi":"10.1109/ICSGCE.2018.8556831","DOIUrl":null,"url":null,"abstract":"Installing grid-connected photovoltaics (GCPV) at telecommunication company (Telco) base stations along highways, and providing electric vehicle (EV) charging facilities at strategic locations such as highway-side base stations offers a synergistic solution to both 1) displacing engine emissions using electricity from a renewable energy source, and 2) providing more highway EV charging stations for long distance EV driving. Strategically placed hillslope EV discharge stations would also offer EV users travelling downhill for long distances to sell their EV battery energy obtained from regenerative braking to the grid, freeing up the needed battery capacity to continue downhill with regenerative braking rather than losing it due to an already fully charged battery. This paper explores potential cost-benefits for investments in (i) highway-side Telco base stations with GCPV systems and EV charging stations as an additional source of revenue, and (ii) investments in EV discharge stations along hillslopes for EV users to sell battery energy from regenerative braking. The methodology used to gauge annual demand of new EV charge stations was by observation of existing highway-side EV charge station usage rates, estimating growth of EVs and charge stations, and reference to existing literature on EV charging tariffs, local electricity costs, and sizing/costing electrical equipment needed for the base station upgrade. To verify discharge kWh calculations from downhill descent regenerative braking, a downhill test drive of a Plug-in Hybrid Electric Vehicle (PHEV) was done. To discourage non-charging EVs remaining parked at charger units, a design framework involving remote charger unit monitoring, reservation, messaging and automated financial incentives is also presented.","PeriodicalId":366392,"journal":{"name":"2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric Vehicle Charging at Telco Base Station and Bidirectional Charging at Hillslope Descent Technical-Commercial Cost-Benefit Study and Scheduling-Reservation System\",\"authors\":\"A. Junid, E. Yap, Pek-Kim Ng\",\"doi\":\"10.1109/ICSGCE.2018.8556831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Installing grid-connected photovoltaics (GCPV) at telecommunication company (Telco) base stations along highways, and providing electric vehicle (EV) charging facilities at strategic locations such as highway-side base stations offers a synergistic solution to both 1) displacing engine emissions using electricity from a renewable energy source, and 2) providing more highway EV charging stations for long distance EV driving. Strategically placed hillslope EV discharge stations would also offer EV users travelling downhill for long distances to sell their EV battery energy obtained from regenerative braking to the grid, freeing up the needed battery capacity to continue downhill with regenerative braking rather than losing it due to an already fully charged battery. This paper explores potential cost-benefits for investments in (i) highway-side Telco base stations with GCPV systems and EV charging stations as an additional source of revenue, and (ii) investments in EV discharge stations along hillslopes for EV users to sell battery energy from regenerative braking. The methodology used to gauge annual demand of new EV charge stations was by observation of existing highway-side EV charge station usage rates, estimating growth of EVs and charge stations, and reference to existing literature on EV charging tariffs, local electricity costs, and sizing/costing electrical equipment needed for the base station upgrade. To verify discharge kWh calculations from downhill descent regenerative braking, a downhill test drive of a Plug-in Hybrid Electric Vehicle (PHEV) was done. To discourage non-charging EVs remaining parked at charger units, a design framework involving remote charger unit monitoring, reservation, messaging and automated financial incentives is also presented.\",\"PeriodicalId\":366392,\"journal\":{\"name\":\"2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSGCE.2018.8556831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGCE.2018.8556831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在高速公路沿线的电信公司(Telco)基站安装并网光伏(GCPV),并在高速公路边的基站等战略位置提供电动汽车(EV)充电设施,提供了一个协同解决方案,可以实现以下两个目标:1)使用可再生能源发电取代发动机排放,2)为长途电动汽车驾驶提供更多的高速公路电动汽车充电站。有战略意义的山坡电动汽车充电站还将为长途下坡的电动汽车用户提供将再生制动获得的电动汽车电池能量出售给电网的机会,从而释放出所需的电池容量,以继续下坡,而不是因为已经充满电的电池而失去电池容量。本文探讨了以下投资的潜在成本效益:(1)高速公路边的电信基站,配备GCPV系统和电动汽车充电站,作为额外的收入来源;(2)沿着山坡投资电动汽车充电站,供电动汽车用户出售再生制动产生的电池能量。用于衡量新电动汽车充电站年需求的方法是观察现有高速公路边电动汽车充电站的使用率,估计电动汽车和充电站的增长,并参考现有关于电动汽车充电关税、当地电力成本和基站升级所需电气设备规模/成本的文献。为了验证下坡再生制动的放电kWh计算结果,对插电式混合动力汽车(PHEV)进行了下坡试驾。为了阻止未充电的电动汽车停留在充电单元,还提出了一个涉及远程充电单元监控、预订、消息传递和自动财务激励的设计框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electric Vehicle Charging at Telco Base Station and Bidirectional Charging at Hillslope Descent Technical-Commercial Cost-Benefit Study and Scheduling-Reservation System
Installing grid-connected photovoltaics (GCPV) at telecommunication company (Telco) base stations along highways, and providing electric vehicle (EV) charging facilities at strategic locations such as highway-side base stations offers a synergistic solution to both 1) displacing engine emissions using electricity from a renewable energy source, and 2) providing more highway EV charging stations for long distance EV driving. Strategically placed hillslope EV discharge stations would also offer EV users travelling downhill for long distances to sell their EV battery energy obtained from regenerative braking to the grid, freeing up the needed battery capacity to continue downhill with regenerative braking rather than losing it due to an already fully charged battery. This paper explores potential cost-benefits for investments in (i) highway-side Telco base stations with GCPV systems and EV charging stations as an additional source of revenue, and (ii) investments in EV discharge stations along hillslopes for EV users to sell battery energy from regenerative braking. The methodology used to gauge annual demand of new EV charge stations was by observation of existing highway-side EV charge station usage rates, estimating growth of EVs and charge stations, and reference to existing literature on EV charging tariffs, local electricity costs, and sizing/costing electrical equipment needed for the base station upgrade. To verify discharge kWh calculations from downhill descent regenerative braking, a downhill test drive of a Plug-in Hybrid Electric Vehicle (PHEV) was done. To discourage non-charging EVs remaining parked at charger units, a design framework involving remote charger unit monitoring, reservation, messaging and automated financial incentives is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ICT Requirements and Challenges for Provision of Grid Services from Renewable Generation Plants A Low-Cost and Energy-Efficient Smart Dust Cleaning Technique for Solar Panel System Design and Implementation of a Maximum Power Point Tracking Algorithm for Wind Turbines Using PLC-SCADA On the Investigation and Experimental Analysis of Energy-Efficient Lighting for a University Building Investigation and Analyses of Energy-Efficient Technologies for HVAC and Lighting Systems via Energy Auditing Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1