学术文献中线形图的曲线分离

Sagnik Ray Choudhury, Shuting Wang, C. Lee Giles
{"title":"学术文献中线形图的曲线分离","authors":"Sagnik Ray Choudhury, Shuting Wang, C. Lee Giles","doi":"10.1145/2910896.2925469","DOIUrl":null,"url":null,"abstract":"Line graphs are abundant in scholarly papers. They are usually generated from a data table and that data can not be accessed. One important step in an automated data extraction pipeline is the curve separation problem: segmenting the pixels into separate curves. Previous work in this domain has focused on raster graphics extracted from scholarly PDFs, whereas most scholarly plots are embedded as vector graphics. We report a system to extract these plots as SVG images and show how that can improve both the accuracy (90%) and the scalability (5-8 seconds) of the curve separation problem.","PeriodicalId":109613,"journal":{"name":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Curve separation for line graphs in scholarly documents\",\"authors\":\"Sagnik Ray Choudhury, Shuting Wang, C. Lee Giles\",\"doi\":\"10.1145/2910896.2925469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Line graphs are abundant in scholarly papers. They are usually generated from a data table and that data can not be accessed. One important step in an automated data extraction pipeline is the curve separation problem: segmenting the pixels into separate curves. Previous work in this domain has focused on raster graphics extracted from scholarly PDFs, whereas most scholarly plots are embedded as vector graphics. We report a system to extract these plots as SVG images and show how that can improve both the accuracy (90%) and the scalability (5-8 seconds) of the curve separation problem.\",\"PeriodicalId\":109613,\"journal\":{\"name\":\"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2910896.2925469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2910896.2925469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

线形图在学术论文中比比皆是。它们通常是从数据表生成的,并且该数据不能被访问。自动数据提取管道中的一个重要步骤是曲线分离问题:将像素分割成单独的曲线。该领域以前的工作主要集中在从学术pdf中提取光栅图形,而大多数学术图形都嵌入为矢量图形。我们报告了一个将这些图提取为SVG图像的系统,并展示了如何提高曲线分离问题的准确性(90%)和可扩展性(5-8秒)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Curve separation for line graphs in scholarly documents
Line graphs are abundant in scholarly papers. They are usually generated from a data table and that data can not be accessed. One important step in an automated data extraction pipeline is the curve separation problem: segmenting the pixels into separate curves. Previous work in this domain has focused on raster graphics extracted from scholarly PDFs, whereas most scholarly plots are embedded as vector graphics. We report a system to extract these plots as SVG images and show how that can improve both the accuracy (90%) and the scalability (5-8 seconds) of the curve separation problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint workshop on bibliometric-enhanced information retrieval and natural language processing for digital libraries (BIRNDL 2016) Panel: Preserving born-digital news ArchiveSpark: Efficient Web archive access, extraction and derivation Desiderata for exploratory search interfaces to Web archives in support of scholarly activities How to identify specialized research communities related to a researcher's changing interests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1