基于模因算法和基于布谷鸟群的搜索方法的混合测试优化框架

Jeya Mala Dharmalingam, K. S. Nathan, S. Balamurugan
{"title":"基于模因算法和基于布谷鸟群的搜索方法的混合测试优化框架","authors":"Jeya Mala Dharmalingam, K. S. Nathan, S. Balamurugan","doi":"10.1145/2593833.2593843","DOIUrl":null,"url":null,"abstract":"The testing process of industrial strength applications usually takes more time to ensure that all the components are rigorously tested to have failure-free operation upon delivery. This research work proposed a hybrid optimization approach that combines the population based multi-objective optimization approach namely Memetic Algorithm with Cuckoo Search (MA-CK) to generate optimal number of test cases that achieves the specified test adequacy criteria based on mutation score and branch coverage. Further, GA, HGA and MA based heuristic algorithms are empirically evaluated and it has been shown that the proposed MA with cuckoo search based optimization algorithm provides an optimal solution.","PeriodicalId":424286,"journal":{"name":"International Workshop on Search-Based Software Testing","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A hybrid test optimization framework using memetic algorithm with cuckoo flocking based search approach\",\"authors\":\"Jeya Mala Dharmalingam, K. S. Nathan, S. Balamurugan\",\"doi\":\"10.1145/2593833.2593843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The testing process of industrial strength applications usually takes more time to ensure that all the components are rigorously tested to have failure-free operation upon delivery. This research work proposed a hybrid optimization approach that combines the population based multi-objective optimization approach namely Memetic Algorithm with Cuckoo Search (MA-CK) to generate optimal number of test cases that achieves the specified test adequacy criteria based on mutation score and branch coverage. Further, GA, HGA and MA based heuristic algorithms are empirically evaluated and it has been shown that the proposed MA with cuckoo search based optimization algorithm provides an optimal solution.\",\"PeriodicalId\":424286,\"journal\":{\"name\":\"International Workshop on Search-Based Software Testing\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Search-Based Software Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593833.2593843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Search-Based Software Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593833.2593843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

工业强度应用的测试过程通常需要更多的时间来确保所有组件都经过严格的测试,以便在交付时无故障运行。本研究提出了一种混合优化方法,将基于种群的多目标优化方法即模因算法与杜鹃搜索(MA-CK)相结合,根据突变评分和分支覆盖率生成满足指定测试充分性标准的最优测试用例数量。此外,对基于遗传算法、HGA算法和基于遗传算法的启发式算法进行了实证评估,结果表明,基于布谷鸟搜索的遗传算法提供了最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid test optimization framework using memetic algorithm with cuckoo flocking based search approach
The testing process of industrial strength applications usually takes more time to ensure that all the components are rigorously tested to have failure-free operation upon delivery. This research work proposed a hybrid optimization approach that combines the population based multi-objective optimization approach namely Memetic Algorithm with Cuckoo Search (MA-CK) to generate optimal number of test cases that achieves the specified test adequacy criteria based on mutation score and branch coverage. Further, GA, HGA and MA based heuristic algorithms are empirically evaluated and it has been shown that the proposed MA with cuckoo search based optimization algorithm provides an optimal solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Root cause analysis for HTML presentation failures using search-based techniques A hybrid test optimization framework using memetic algorithm with cuckoo flocking based search approach Model based test case generation with metaheuristics for networks of timed automata Test generation across multiple layers Search based techniques for software fault prediction: current trends and future directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1