{"title":"解决高频器件中蓝宝石衬底导热系数低的整体优化技术","authors":"Amirreza Ghadimi Avval, S. El-Ghazaly","doi":"10.1109/WMCAS.2018.8400631","DOIUrl":null,"url":null,"abstract":"The recent upsurge in wireless communications demands devices working at higher frequencies with higher output densities. In general, wide-bandgap materials seem to be the reliable choice for these applications, specifically GaN HEMT that has shown great advantage over its previous counterparts. A holistic optimization technique is proposed to define the stages that a high frequency, high power device is designed. An issue with the thermal conductivity of the substrates for these devices is also addressed and a fabrication technique is proposed to solve it.","PeriodicalId":254840,"journal":{"name":"2018 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS)","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Holistic optimization technique for solving low thermal conductivity of sapphire substrates in high frequency devices\",\"authors\":\"Amirreza Ghadimi Avval, S. El-Ghazaly\",\"doi\":\"10.1109/WMCAS.2018.8400631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent upsurge in wireless communications demands devices working at higher frequencies with higher output densities. In general, wide-bandgap materials seem to be the reliable choice for these applications, specifically GaN HEMT that has shown great advantage over its previous counterparts. A holistic optimization technique is proposed to define the stages that a high frequency, high power device is designed. An issue with the thermal conductivity of the substrates for these devices is also addressed and a fabrication technique is proposed to solve it.\",\"PeriodicalId\":254840,\"journal\":{\"name\":\"2018 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS)\",\"volume\":\"169 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WMCAS.2018.8400631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMCAS.2018.8400631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Holistic optimization technique for solving low thermal conductivity of sapphire substrates in high frequency devices
The recent upsurge in wireless communications demands devices working at higher frequencies with higher output densities. In general, wide-bandgap materials seem to be the reliable choice for these applications, specifically GaN HEMT that has shown great advantage over its previous counterparts. A holistic optimization technique is proposed to define the stages that a high frequency, high power device is designed. An issue with the thermal conductivity of the substrates for these devices is also addressed and a fabrication technique is proposed to solve it.