基于三重栅格的访问控制模型:如何保证当前计算机网络的安全

M. Kucherov, N. Bogulskaya
{"title":"基于三重栅格的访问控制模型:如何保证当前计算机网络的安全","authors":"M. Kucherov, N. Bogulskaya","doi":"10.37394/23205.2023.22.12","DOIUrl":null,"url":null,"abstract":"Designing security, from the hardware level, is essential to ensure the integrity of the intelligent cyberphysical infrastructure that is the Industrial Internet of Things (IIoT). If intelligent cyber-physical infrastructure fails to do the right things because it is insecure and vulnerable, then there will be negative social consequences [1]. Security is, in a sense, the access control to IIoT systems, which increasingly relies on the ability to compose different policies. Therefore, the advantage in any framework for compiling policies is that it is intuitive, formal, expressive, application-independent, as well as expandable to create domain-specific instances. Recently, such a scheme was proposed based on Belnap logic FOUR2 [2]. Four values of the Belnap bilattice have been interpreted as grant, deny, conflict, or unspecified with respect to access-control policy. Belnap's four-valued logic has found a variety of applications in various fields, such as deductive database theory, distributed logic programming, and other areas. However, it turns out that the truth order in FOUR2 is a truth-and-falsity order at the same time [3]. The smallest lattice, where the orders of truth and falsity are independent of each other, which is especially important for security policy, is that of Shramko-Wansing’s SIXTEEN3. This generalization is well-motivated and leads from the bilattice FOUR2 with an information and a truth-and-falsity ordering to another algebraic structure, namely the trilattice SIXTEEN3 with an information ordering together with a truth ordering and a (distinct) falsity ordering. Based on SIXTEEN3 and new Boolean predicates to control access [4], we define an expressive access-control policy language, having composition statements based on the statements of Schramko-Wansing’s logic. Natural orderings on politics are obtained by independent lifting the orders of truth and falsity of trilattice, which results in a query language in which conflict freedom analysis can be developed. The reduction of formal verification of queries to that on predicates over access requests enables to carry out policy analysis. We evaluate our approach through examples of control access model policy.","PeriodicalId":332148,"journal":{"name":"WSEAS TRANSACTIONS ON COMPUTERS","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trilattice-Based Access Control Models: How to Secure Current Computer Network Mikhail\",\"authors\":\"M. Kucherov, N. Bogulskaya\",\"doi\":\"10.37394/23205.2023.22.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing security, from the hardware level, is essential to ensure the integrity of the intelligent cyberphysical infrastructure that is the Industrial Internet of Things (IIoT). If intelligent cyber-physical infrastructure fails to do the right things because it is insecure and vulnerable, then there will be negative social consequences [1]. Security is, in a sense, the access control to IIoT systems, which increasingly relies on the ability to compose different policies. Therefore, the advantage in any framework for compiling policies is that it is intuitive, formal, expressive, application-independent, as well as expandable to create domain-specific instances. Recently, such a scheme was proposed based on Belnap logic FOUR2 [2]. Four values of the Belnap bilattice have been interpreted as grant, deny, conflict, or unspecified with respect to access-control policy. Belnap's four-valued logic has found a variety of applications in various fields, such as deductive database theory, distributed logic programming, and other areas. However, it turns out that the truth order in FOUR2 is a truth-and-falsity order at the same time [3]. The smallest lattice, where the orders of truth and falsity are independent of each other, which is especially important for security policy, is that of Shramko-Wansing’s SIXTEEN3. This generalization is well-motivated and leads from the bilattice FOUR2 with an information and a truth-and-falsity ordering to another algebraic structure, namely the trilattice SIXTEEN3 with an information ordering together with a truth ordering and a (distinct) falsity ordering. Based on SIXTEEN3 and new Boolean predicates to control access [4], we define an expressive access-control policy language, having composition statements based on the statements of Schramko-Wansing’s logic. Natural orderings on politics are obtained by independent lifting the orders of truth and falsity of trilattice, which results in a query language in which conflict freedom analysis can be developed. The reduction of formal verification of queries to that on predicates over access requests enables to carry out policy analysis. We evaluate our approach through examples of control access model policy.\",\"PeriodicalId\":332148,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON COMPUTERS\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON COMPUTERS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23205.2023.22.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON COMPUTERS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23205.2023.22.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从硬件层面设计安全性对于确保工业物联网(IIoT)的智能网络物理基础设施的完整性至关重要。如果智能网络物理基础设施因为不安全和脆弱而不能做正确的事情,那么将会产生负面的社会后果。从某种意义上说,安全性是对IIoT系统的访问控制,它越来越依赖于组合不同策略的能力。因此,任何用于编译策略的框架的优势在于它是直观的、形式化的、表达性的、与应用程序无关的,并且可以扩展以创建特定于域的实例。最近,基于Belnap逻辑four2[2]提出了这种方案。关于访问控制策略,Belnap双边协议的四个值被解释为授予、拒绝、冲突或未指定。贝尔纳普的四值逻辑已经在各个领域得到了广泛的应用,例如演绎数据库理论、分布式逻辑编程等领域。然而,事实证明,在FOUR2的真理顺序是一个真理和谬误的顺序在同一时间b[3]。最小的格是Shramko-Wansing的SIXTEEN3,其中真假的顺序彼此独立,这对安全策略特别重要。这种推广是有良好动机的,并且从具有信息和真假排序的双格FOUR2引导到另一个代数结构,即具有信息排序、真排序和(不同)假排序的三格SIXTEEN3。基于SIXTEEN3和新的布尔谓词来控制访问[4],我们定义了一种表达性的访问控制策略语言,该语言具有基于Schramko-Wansing逻辑语句的组合语句。通过独立提升三格的真假顺序,得到政治上的自然排序,从而形成一种可以发展冲突自由分析的查询语言。将查询的正式验证简化为访问请求上的谓词验证,从而可以执行策略分析。我们通过控制访问模型策略的示例来评估我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trilattice-Based Access Control Models: How to Secure Current Computer Network Mikhail
Designing security, from the hardware level, is essential to ensure the integrity of the intelligent cyberphysical infrastructure that is the Industrial Internet of Things (IIoT). If intelligent cyber-physical infrastructure fails to do the right things because it is insecure and vulnerable, then there will be negative social consequences [1]. Security is, in a sense, the access control to IIoT systems, which increasingly relies on the ability to compose different policies. Therefore, the advantage in any framework for compiling policies is that it is intuitive, formal, expressive, application-independent, as well as expandable to create domain-specific instances. Recently, such a scheme was proposed based on Belnap logic FOUR2 [2]. Four values of the Belnap bilattice have been interpreted as grant, deny, conflict, or unspecified with respect to access-control policy. Belnap's four-valued logic has found a variety of applications in various fields, such as deductive database theory, distributed logic programming, and other areas. However, it turns out that the truth order in FOUR2 is a truth-and-falsity order at the same time [3]. The smallest lattice, where the orders of truth and falsity are independent of each other, which is especially important for security policy, is that of Shramko-Wansing’s SIXTEEN3. This generalization is well-motivated and leads from the bilattice FOUR2 with an information and a truth-and-falsity ordering to another algebraic structure, namely the trilattice SIXTEEN3 with an information ordering together with a truth ordering and a (distinct) falsity ordering. Based on SIXTEEN3 and new Boolean predicates to control access [4], we define an expressive access-control policy language, having composition statements based on the statements of Schramko-Wansing’s logic. Natural orderings on politics are obtained by independent lifting the orders of truth and falsity of trilattice, which results in a query language in which conflict freedom analysis can be developed. The reduction of formal verification of queries to that on predicates over access requests enables to carry out policy analysis. We evaluate our approach through examples of control access model policy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Medical Image Classification using a Many to Many Relation, Multilayered Fuzzy Systems and AI Aspects of Symmetry in Petri Nets Chaos in Order: Applying ML, NLP, and Chaos Theory in Open Source Intelligence for Counter-Terrorism Combinatorial Optimization of Engineering Systems based on Diagrammatic Design Federated Learning: Attacks and Defenses, Rewards, Energy Efficiency: Past, Present and Future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1