{"title":"递归CR界:代数和统计加速","authors":"M. Usman, A. Hero","doi":"10.1109/ICASSP.1994.389863","DOIUrl":null,"url":null,"abstract":"Computation of the Cramer-Rao bound involves inversion of the Fisher information matrix (FIM). The inversion can become computationally intractable when the number of unknown parameters is large. Hero et. al. (see IEEE Nuclear Science Symposium and Medical Imaging Conference, Orlando, 1983) has presented a recursive, monotonically convergent and computationally efficient algorithm to invert sub-matrices of the FIM corresponding to a small region of interest in image reconstruction. The convergence rate of this algorithm depends on a splitting matrix which can be interpreted as a complete-data FIM. We investigate the acceleration of the algorithm using several different choices of the complete-data FIM. We also present a conjugate gradient based algorithm which achieves a much faster convergence rate at the expense of monotone convergence. We apply the methods developed in this paper to emission tomography.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recursive CR bounds: algebraic and statistical acceleration\",\"authors\":\"M. Usman, A. Hero\",\"doi\":\"10.1109/ICASSP.1994.389863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computation of the Cramer-Rao bound involves inversion of the Fisher information matrix (FIM). The inversion can become computationally intractable when the number of unknown parameters is large. Hero et. al. (see IEEE Nuclear Science Symposium and Medical Imaging Conference, Orlando, 1983) has presented a recursive, monotonically convergent and computationally efficient algorithm to invert sub-matrices of the FIM corresponding to a small region of interest in image reconstruction. The convergence rate of this algorithm depends on a splitting matrix which can be interpreted as a complete-data FIM. We investigate the acceleration of the algorithm using several different choices of the complete-data FIM. We also present a conjugate gradient based algorithm which achieves a much faster convergence rate at the expense of monotone convergence. We apply the methods developed in this paper to emission tomography.<<ETX>>\",\"PeriodicalId\":290798,\"journal\":{\"name\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1994.389863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Cramer-Rao界的计算涉及Fisher信息矩阵(FIM)的反演。当未知参数数量较大时,反演变得难以计算。Hero等人(参见IEEE核科学研讨会和医学成像会议,奥兰多,1983)提出了一种递归、单调收敛和计算效率高的算法,用于反演图像重建中感兴趣的小区域对应的FIM的子矩阵。该算法的收敛速度取决于一个分裂矩阵,该分裂矩阵可以解释为一个完整的数据FIM。我们使用几种不同的完全数据FIM选择来研究算法的加速。我们还提出了一种基于共轭梯度的算法,该算法以单调收敛为代价获得了更快的收敛速度。我们将本文开发的方法应用于发射层析成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recursive CR bounds: algebraic and statistical acceleration
Computation of the Cramer-Rao bound involves inversion of the Fisher information matrix (FIM). The inversion can become computationally intractable when the number of unknown parameters is large. Hero et. al. (see IEEE Nuclear Science Symposium and Medical Imaging Conference, Orlando, 1983) has presented a recursive, monotonically convergent and computationally efficient algorithm to invert sub-matrices of the FIM corresponding to a small region of interest in image reconstruction. The convergence rate of this algorithm depends on a splitting matrix which can be interpreted as a complete-data FIM. We investigate the acceleration of the algorithm using several different choices of the complete-data FIM. We also present a conjugate gradient based algorithm which achieves a much faster convergence rate at the expense of monotone convergence. We apply the methods developed in this paper to emission tomography.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new cumulant based parameter estimation method for noncausal autoregressive systems Using Gaussian mixture modeling in speech recognition An evaluation of cross-language adaptation for rapid HMM development in a new language Unsupervised segmentation of radar images using wavelet decomposition and cumulants Improving speech recognition performance via phone-dependent VQ codebooks and adaptive language models in SPHINX-II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1