基于无监督图像生成对抗网络的磁共振成像超分辨率分析

Yunhe Li, Huiyan Zhao, Bo Li, Yi Wang
{"title":"基于无监督图像生成对抗网络的磁共振成像超分辨率分析","authors":"Yunhe Li, Huiyan Zhao, Bo Li, Yi Wang","doi":"10.1145/3503047.3503064","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging (MRI) is widely used in clinical medical auxiliary diagnosis. In acquiring images by MRI machines, patients usually need to be exposed to harmful radiation. The radiation dose can be reduced by reducing the resolution of MRI images. This paper analyzes the super-resolution of low-resolution MRI images based on a deep learning algorithm to ensure the pixel quality of the MRI image required for medical diagnosis. It then reconstructs high-resolution MRI images as an alternative method to reduce radiation dose. This paper studies how to improve the resolution of low-dose MRI by 4 times through super-resolution analysis based on deep learning technology without other available information. This paper constructs a data set close to the natural low-high resolution image pair through degenerate kernel estimation and noise injection and constructs a two-layer generated countermeasure network based on the design ideas of ESRGAN, PatchGAN, and VGG-19. The test shows that our method is better than EDSR, RCAN, and ESRGAN in comparing non-reference image quality evaluation indexes.","PeriodicalId":190604,"journal":{"name":"Proceedings of the 3rd International Conference on Advanced Information Science and System","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"x4 Super-Resolution Analysis of Magnetic Resonance Imaging based on Generative Adversarial Network without Supervised Images\",\"authors\":\"Yunhe Li, Huiyan Zhao, Bo Li, Yi Wang\",\"doi\":\"10.1145/3503047.3503064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic resonance imaging (MRI) is widely used in clinical medical auxiliary diagnosis. In acquiring images by MRI machines, patients usually need to be exposed to harmful radiation. The radiation dose can be reduced by reducing the resolution of MRI images. This paper analyzes the super-resolution of low-resolution MRI images based on a deep learning algorithm to ensure the pixel quality of the MRI image required for medical diagnosis. It then reconstructs high-resolution MRI images as an alternative method to reduce radiation dose. This paper studies how to improve the resolution of low-dose MRI by 4 times through super-resolution analysis based on deep learning technology without other available information. This paper constructs a data set close to the natural low-high resolution image pair through degenerate kernel estimation and noise injection and constructs a two-layer generated countermeasure network based on the design ideas of ESRGAN, PatchGAN, and VGG-19. The test shows that our method is better than EDSR, RCAN, and ESRGAN in comparing non-reference image quality evaluation indexes.\",\"PeriodicalId\":190604,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Advanced Information Science and System\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Advanced Information Science and System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503047.3503064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Advanced Information Science and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503047.3503064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁共振成像(MRI)在临床医学辅助诊断中应用广泛。在通过核磁共振成像机器获取图像时,患者通常需要暴露在有害的辐射中。可以通过降低核磁共振成像的分辨率来降低辐射剂量。本文基于深度学习算法对低分辨率MRI图像的超分辨率进行分析,以保证医学诊断所需的MRI图像像素质量。然后重建高分辨率核磁共振成像图像,作为减少辐射剂量的替代方法。本文研究如何在没有其他可用信息的情况下,通过基于深度学习技术的超分辨率分析,将低剂量MRI的分辨率提高4倍。本文通过退化核估计和噪声注入构建了接近自然低高分辨率图像对的数据集,并基于ESRGAN、PatchGAN和VGG-19的设计思想构建了两层生成的对抗网络。实验表明,在非参考图像质量评价指标的比较中,我们的方法优于EDSR、RCAN和ESRGAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
x4 Super-Resolution Analysis of Magnetic Resonance Imaging based on Generative Adversarial Network without Supervised Images
Magnetic resonance imaging (MRI) is widely used in clinical medical auxiliary diagnosis. In acquiring images by MRI machines, patients usually need to be exposed to harmful radiation. The radiation dose can be reduced by reducing the resolution of MRI images. This paper analyzes the super-resolution of low-resolution MRI images based on a deep learning algorithm to ensure the pixel quality of the MRI image required for medical diagnosis. It then reconstructs high-resolution MRI images as an alternative method to reduce radiation dose. This paper studies how to improve the resolution of low-dose MRI by 4 times through super-resolution analysis based on deep learning technology without other available information. This paper constructs a data set close to the natural low-high resolution image pair through degenerate kernel estimation and noise injection and constructs a two-layer generated countermeasure network based on the design ideas of ESRGAN, PatchGAN, and VGG-19. The test shows that our method is better than EDSR, RCAN, and ESRGAN in comparing non-reference image quality evaluation indexes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing the Popularity of Testing Careers among Canadian, Indian, Chinese, and Malaysian Students Radar Working Mode Recognition Method Based on Complex Network Analysis Unsupervised Barcode Image Reconstruction Based on Knowledge Distillation Research on the information System architecture design framework and reference resources of American Army Rearch on quantitative evaluation technology of equipment battlefield environment adaptability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1