30kw电静液作动器多目标优化设计

Chi Zhang, Xudong Han, T. Minav, Y. Fu
{"title":"30kw电静液作动器多目标优化设计","authors":"Chi Zhang, Xudong Han, T. Minav, Y. Fu","doi":"10.3390/iecat2020-08525","DOIUrl":null,"url":null,"abstract":"Electro-hydrostatic actuators (EHAs) combine the advantages of electric and hydraulic actuators, and it is resulting in a preferable solution for the heavy load actuation in applications such as aircrafts, ships, construction machines, and machine tools. The required power level of the EHA is increasing because the EHA is being introduced to heavier vehicles such as submarines and heavy launch vehicles. Thus, a 30 kW EHA is under development for launch vehicles, which simultaneously require high dynamic performance, light weight, high efficiency, etc. However, the existing optimization design methods of EHA do not take in account all the requirements, especially the dynamic performance. Therefore, a dedicate multi-objective optimization design method is proposed for the preliminary design for the 30 kW EHA. In this study, firstly, the design requirements were analyzed for the launch vehicle application, and the objectives and the constraints of the optimization design were defined for the 30 kW EHA. Secondly, dedicate models were developed for evaluating each objective or constraint. Among these models, the EHA weight is estimated through the scaling law method and analytical calculation, the bandwidth is estimated based on the cascaded control method, the energy consumption is evaluated by the inverse dynamic simulation utilizing dedicate Matlab codes. Thirdly, the multi-objective EHA optimization design was implemented based on the genetic algorithm. Hereby, the key parameters were decided for the proposed EHA design. At last, the optimization design results were evaluated through simulation analysis, which demonstrated that the 30 kW EHA achieved more than 10 Hz bandwidth with under 70 kg weight while the efficiency was also optimized. In addition, the proposed method is shown to be competent for the preliminary design of high power EHAs which are subject to multiple critical requirements.","PeriodicalId":152837,"journal":{"name":"Proceedings of 1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications","volume":"385 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-objective optimization design of a 30 kW Electro-hydrostatic Actuator\",\"authors\":\"Chi Zhang, Xudong Han, T. Minav, Y. Fu\",\"doi\":\"10.3390/iecat2020-08525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electro-hydrostatic actuators (EHAs) combine the advantages of electric and hydraulic actuators, and it is resulting in a preferable solution for the heavy load actuation in applications such as aircrafts, ships, construction machines, and machine tools. The required power level of the EHA is increasing because the EHA is being introduced to heavier vehicles such as submarines and heavy launch vehicles. Thus, a 30 kW EHA is under development for launch vehicles, which simultaneously require high dynamic performance, light weight, high efficiency, etc. However, the existing optimization design methods of EHA do not take in account all the requirements, especially the dynamic performance. Therefore, a dedicate multi-objective optimization design method is proposed for the preliminary design for the 30 kW EHA. In this study, firstly, the design requirements were analyzed for the launch vehicle application, and the objectives and the constraints of the optimization design were defined for the 30 kW EHA. Secondly, dedicate models were developed for evaluating each objective or constraint. Among these models, the EHA weight is estimated through the scaling law method and analytical calculation, the bandwidth is estimated based on the cascaded control method, the energy consumption is evaluated by the inverse dynamic simulation utilizing dedicate Matlab codes. Thirdly, the multi-objective EHA optimization design was implemented based on the genetic algorithm. Hereby, the key parameters were decided for the proposed EHA design. At last, the optimization design results were evaluated through simulation analysis, which demonstrated that the 30 kW EHA achieved more than 10 Hz bandwidth with under 70 kg weight while the efficiency was also optimized. In addition, the proposed method is shown to be competent for the preliminary design of high power EHAs which are subject to multiple critical requirements.\",\"PeriodicalId\":152837,\"journal\":{\"name\":\"Proceedings of 1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications\",\"volume\":\"385 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/iecat2020-08525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iecat2020-08525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电静液致动器(EHAs)结合了电动和液压致动器的优点,是飞机、船舶、工程机械和机床等重载致动器的理想解决方案。由于EHA被引入到潜艇和重型运载火箭等重型运载工具中,因此EHA所需的功率水平正在增加。因此,用于运载火箭的30千瓦EHA正在开发中,同时要求高动态性能、轻重量、高效率等。然而,现有的EHA优化设计方法并没有考虑到所有的要求,特别是动态性能。为此,提出了一种专门的多目标优化设计方法,用于30kw EHA的初步设计。本文首先分析了运载火箭应用的设计要求,确定了30 kW EHA优化设计的目标和约束条件;其次,开发了专门的模型来评估每个目标或约束。其中,通过标度法和解析计算估计EHA权值,基于级联控制方法估计带宽,利用Matlab专用代码进行逆动态仿真评估能耗。第三,基于遗传算法实现了多目标EHA优化设计。据此,确定了EHA设计的关键参数。最后,通过仿真分析对优化设计结果进行了评价,结果表明,30 kW EHA在重量小于70 kg的情况下实现了大于10 Hz的带宽,同时效率也得到了优化。此外,所提出的方法可用于满足多种临界要求的高功率eha的初步设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective optimization design of a 30 kW Electro-hydrostatic Actuator
Electro-hydrostatic actuators (EHAs) combine the advantages of electric and hydraulic actuators, and it is resulting in a preferable solution for the heavy load actuation in applications such as aircrafts, ships, construction machines, and machine tools. The required power level of the EHA is increasing because the EHA is being introduced to heavier vehicles such as submarines and heavy launch vehicles. Thus, a 30 kW EHA is under development for launch vehicles, which simultaneously require high dynamic performance, light weight, high efficiency, etc. However, the existing optimization design methods of EHA do not take in account all the requirements, especially the dynamic performance. Therefore, a dedicate multi-objective optimization design method is proposed for the preliminary design for the 30 kW EHA. In this study, firstly, the design requirements were analyzed for the launch vehicle application, and the objectives and the constraints of the optimization design were defined for the 30 kW EHA. Secondly, dedicate models were developed for evaluating each objective or constraint. Among these models, the EHA weight is estimated through the scaling law method and analytical calculation, the bandwidth is estimated based on the cascaded control method, the energy consumption is evaluated by the inverse dynamic simulation utilizing dedicate Matlab codes. Thirdly, the multi-objective EHA optimization design was implemented based on the genetic algorithm. Hereby, the key parameters were decided for the proposed EHA design. At last, the optimization design results were evaluated through simulation analysis, which demonstrated that the 30 kW EHA achieved more than 10 Hz bandwidth with under 70 kg weight while the efficiency was also optimized. In addition, the proposed method is shown to be competent for the preliminary design of high power EHAs which are subject to multiple critical requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictivity of CNC machine-induced vibrations on inter-story floors based on coupled experimental-numerical investigations Multi-objective optimization design of a 30 kW Electro-hydrostatic Actuator Finding the Perfect Match—Different Heavy-Duty Mobile Applications Call for Different Actuators Design of a Cable-driven Actuator for Pronation and Supination of the Forearm to Integrate an Active Arm Orthosis Open-Loop Control Design of Shape Memory Alloys and Polymers through Tapping Motion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1