基于群体极值优化的感应电机磁场定向控制二自由度控制策略

Md. Mahmudul Hasan, Md. Shajid Hussain, M. S. Rana, M. H. K. Roni
{"title":"基于群体极值优化的感应电机磁场定向控制二自由度控制策略","authors":"Md. Mahmudul Hasan, Md. Shajid Hussain, M. S. Rana, M. H. K. Roni","doi":"10.1109/ICEEE54059.2021.9718799","DOIUrl":null,"url":null,"abstract":"In this research work, population extremal optimization (PEO) with a hybrid mutation operation was used to optimize the speed loop’s proportional-integral-derivative (PID) controller of the indirect field-oriented control (IFOC) of a three-phase induction motor (IM). A two-degree-of-freedom (2-DOF) structure of the speed control loop for smoothing the electromagnetic torque responses without manipulating the current controllers was proposed. It was formed by considering the q-axis stator current, to which the electromagnetic torque is directly proportional, as a disturbance variable. The sum of integral time absolute error (ITAE) and a chattering penalty function was used as the objective function for controller optimization. The proposed PEO-based 2-DOF control achieved a lower objective function value than designs based on particle swarm optimization (PSO) and a genetic algorithm (GA). Also, appreciably superior performances of the 2-DOF control over the 1-DOF one was observed in terms of torque smoothing as well as speed tracking. The robustness of the proposed controller was examined by simulating a wide range of parameter variations. The modeling and simulation of the system was conducted in a MATLAB/Simulink platform.","PeriodicalId":188366,"journal":{"name":"2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE)","volume":"388 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Population Extremal Optimization Based 2-DOF Control Strategy for Field Oriented Control of Induction Motor\",\"authors\":\"Md. Mahmudul Hasan, Md. Shajid Hussain, M. S. Rana, M. H. K. Roni\",\"doi\":\"10.1109/ICEEE54059.2021.9718799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research work, population extremal optimization (PEO) with a hybrid mutation operation was used to optimize the speed loop’s proportional-integral-derivative (PID) controller of the indirect field-oriented control (IFOC) of a three-phase induction motor (IM). A two-degree-of-freedom (2-DOF) structure of the speed control loop for smoothing the electromagnetic torque responses without manipulating the current controllers was proposed. It was formed by considering the q-axis stator current, to which the electromagnetic torque is directly proportional, as a disturbance variable. The sum of integral time absolute error (ITAE) and a chattering penalty function was used as the objective function for controller optimization. The proposed PEO-based 2-DOF control achieved a lower objective function value than designs based on particle swarm optimization (PSO) and a genetic algorithm (GA). Also, appreciably superior performances of the 2-DOF control over the 1-DOF one was observed in terms of torque smoothing as well as speed tracking. The robustness of the proposed controller was examined by simulating a wide range of parameter variations. The modeling and simulation of the system was conducted in a MATLAB/Simulink platform.\",\"PeriodicalId\":188366,\"journal\":{\"name\":\"2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE)\",\"volume\":\"388 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE54059.2021.9718799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE54059.2021.9718799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用混合突变操作的群体极值优化(PEO)方法对三相异步电动机间接定向磁场控制(IFOC)中速度环的比例-积分-导数(PID)控制器进行优化。提出了一种两自由度(2-DOF)的速度控制环结构,在不操纵电流控制器的情况下平滑电磁转矩响应。它是将电磁转矩与q轴定子电流成正比的扰动变量考虑而形成的。采用积分时间绝对误差(ITAE)和抖振惩罚函数作为控制器优化的目标函数。与粒子群优化(PSO)和遗传算法(GA)相比,本文提出的基于peo的二自由度控制方法实现了较低的目标函数值。此外,在转矩平滑和速度跟踪方面,2-DOF控制的性能明显优于1-DOF控制。通过模拟大范围的参数变化,验证了所提控制器的鲁棒性。在MATLAB/Simulink平台上对系统进行了建模和仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Population Extremal Optimization Based 2-DOF Control Strategy for Field Oriented Control of Induction Motor
In this research work, population extremal optimization (PEO) with a hybrid mutation operation was used to optimize the speed loop’s proportional-integral-derivative (PID) controller of the indirect field-oriented control (IFOC) of a three-phase induction motor (IM). A two-degree-of-freedom (2-DOF) structure of the speed control loop for smoothing the electromagnetic torque responses without manipulating the current controllers was proposed. It was formed by considering the q-axis stator current, to which the electromagnetic torque is directly proportional, as a disturbance variable. The sum of integral time absolute error (ITAE) and a chattering penalty function was used as the objective function for controller optimization. The proposed PEO-based 2-DOF control achieved a lower objective function value than designs based on particle swarm optimization (PSO) and a genetic algorithm (GA). Also, appreciably superior performances of the 2-DOF control over the 1-DOF one was observed in terms of torque smoothing as well as speed tracking. The robustness of the proposed controller was examined by simulating a wide range of parameter variations. The modeling and simulation of the system was conducted in a MATLAB/Simulink platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer-Aided Polyp Removal Detection in Endoscopic Images FPGA based Histogram Equalization for Image Processing Spreading Loss Model for Channel Characterization of Future 6G Terahertz Communication Networks Impact of Cladding Rectangular Bars on the Antiresonant Hollow Core Fiber Predicting Autism Spectrum Disorder Based On Gender Using Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1