通过身份联合和异常检测提高蜂窝物联网安全性

Bernardo Santos, Bruno Dzogovic, Boning Feng, Niels Jacot, V. T. Do, T. V. Do
{"title":"通过身份联合和异常检测提高蜂窝物联网安全性","authors":"Bernardo Santos, Bruno Dzogovic, Boning Feng, Niels Jacot, V. T. Do, T. V. Do","doi":"10.1109/ICCCS49078.2020.9118438","DOIUrl":null,"url":null,"abstract":"As we notice the increasing adoption of Cellular IoT solutions (smart-home, e-health, among others), there are still some security aspects that can be improved as these devices can suffer various types of attacks that can have a high-impact over our daily lives. In order to avoid this, we present a multi-front security solution that consists on a federated cross-layered authentication mechanism, as well as a machine learning platform with anomaly detection techniques for data traffic analysis as a way to study devices’ behavior so it can preemptively detect attacks and minimize their impact. In this paper, we also present a proof-of-concept to illustrate the proposed solution and showcase its feasibility, as well as the discussion of future iterations that will occur for this work.","PeriodicalId":105556,"journal":{"name":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving Cellular IoT Security with Identity Federation and Anomaly Detection\",\"authors\":\"Bernardo Santos, Bruno Dzogovic, Boning Feng, Niels Jacot, V. T. Do, T. V. Do\",\"doi\":\"10.1109/ICCCS49078.2020.9118438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As we notice the increasing adoption of Cellular IoT solutions (smart-home, e-health, among others), there are still some security aspects that can be improved as these devices can suffer various types of attacks that can have a high-impact over our daily lives. In order to avoid this, we present a multi-front security solution that consists on a federated cross-layered authentication mechanism, as well as a machine learning platform with anomaly detection techniques for data traffic analysis as a way to study devices’ behavior so it can preemptively detect attacks and minimize their impact. In this paper, we also present a proof-of-concept to illustrate the proposed solution and showcase its feasibility, as well as the discussion of future iterations that will occur for this work.\",\"PeriodicalId\":105556,\"journal\":{\"name\":\"2020 5th International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCS49078.2020.9118438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS49078.2020.9118438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

当我们注意到越来越多的采用蜂窝物联网解决方案(智能家居、电子医疗等)时,仍然有一些安全方面可以改进,因为这些设备可能遭受各种类型的攻击,这些攻击可能对我们的日常生活产生重大影响。为了避免这种情况,我们提出了一个多战线安全解决方案,该解决方案由联邦跨层身份验证机制组成,以及一个具有异常检测技术的机器学习平台,用于数据流量分析,作为研究设备行为的一种方式,因此它可以先发制人地检测攻击并将其影响降至最低。在本文中,我们还提供了一个概念证明,以说明所建议的解决方案并展示其可行性,以及对将在此工作中发生的未来迭代的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Cellular IoT Security with Identity Federation and Anomaly Detection
As we notice the increasing adoption of Cellular IoT solutions (smart-home, e-health, among others), there are still some security aspects that can be improved as these devices can suffer various types of attacks that can have a high-impact over our daily lives. In order to avoid this, we present a multi-front security solution that consists on a federated cross-layered authentication mechanism, as well as a machine learning platform with anomaly detection techniques for data traffic analysis as a way to study devices’ behavior so it can preemptively detect attacks and minimize their impact. In this paper, we also present a proof-of-concept to illustrate the proposed solution and showcase its feasibility, as well as the discussion of future iterations that will occur for this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Resource Dynamic Recombination and Its Technology Development of Space TT&C Equipment Automatic Arousal Detection Using Multi-model Deep Neural Network Internet Traffic Categories Demand Prediction to Support Dynamic QoS Research on Scatter Imaging Method for Electromagnetic Field Inverse Problem Based on Sparse Constraints Usage Intention of Internet of Vehicles Based on CAB Model: The Moderating Effect of Reference Groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1