基于双信息的运动目标检测背景模型

S. Roy, T. Bouwmans
{"title":"基于双信息的运动目标检测背景模型","authors":"S. Roy, T. Bouwmans","doi":"10.1109/ICIP40778.2020.9190811","DOIUrl":null,"url":null,"abstract":"In this article, a novel pixel based object detection framework is proposed that leverages dual type pixel-level information to construct the background model. The first type of information is initially used intensity histograms over a training set of a few initial video frames. Finally, it is formed by gathering all the minimum and maximum values of contiguous non-zero frequencies of the temporal intensity histogram. The second type of information constitutes a set having only the discrete pixel values. Subsequently, a pixel-level periodic updating scheme is used to make the model robust and flexible enough to recognize and detect foregrounds in various critical background environments. This dual format model produces effective results over many state-of-the-art methods in a large variety of challenging real-life video sequences.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual Information-Based Background Model For Moving Object Detection\",\"authors\":\"S. Roy, T. Bouwmans\",\"doi\":\"10.1109/ICIP40778.2020.9190811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a novel pixel based object detection framework is proposed that leverages dual type pixel-level information to construct the background model. The first type of information is initially used intensity histograms over a training set of a few initial video frames. Finally, it is formed by gathering all the minimum and maximum values of contiguous non-zero frequencies of the temporal intensity histogram. The second type of information constitutes a set having only the discrete pixel values. Subsequently, a pixel-level periodic updating scheme is used to make the model robust and flexible enough to recognize and detect foregrounds in various critical background environments. This dual format model produces effective results over many state-of-the-art methods in a large variety of challenging real-life video sequences.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9190811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的基于像素的目标检测框架,利用双类像素级信息构建背景模型。第一类信息最初是在几个初始视频帧的训练集上使用强度直方图。最后,将时间强度直方图中相邻非零频率的所有最小值和最大值集合形成。第二种类型的信息构成仅具有离散像素值的集合。随后,采用像素级周期性更新方案,使模型具有足够的鲁棒性和灵活性,能够在各种关键背景环境中识别和检测前景。这种双格式模型在许多最先进的方法中产生有效的结果,在各种具有挑战性的现实生活视频序列中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual Information-Based Background Model For Moving Object Detection
In this article, a novel pixel based object detection framework is proposed that leverages dual type pixel-level information to construct the background model. The first type of information is initially used intensity histograms over a training set of a few initial video frames. Finally, it is formed by gathering all the minimum and maximum values of contiguous non-zero frequencies of the temporal intensity histogram. The second type of information constitutes a set having only the discrete pixel values. Subsequently, a pixel-level periodic updating scheme is used to make the model robust and flexible enough to recognize and detect foregrounds in various critical background environments. This dual format model produces effective results over many state-of-the-art methods in a large variety of challenging real-life video sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1