复合文档的字体解析器模糊化

Hongliang Liang, Yuying Wang, Huayang Cao, Jiajie Wang
{"title":"复合文档的字体解析器模糊化","authors":"Hongliang Liang, Yuying Wang, Huayang Cao, Jiajie Wang","doi":"10.1109/CSCloud.2017.42","DOIUrl":null,"url":null,"abstract":"Currently, complex software (e.g. PDF readers) usually takes various inputs embedded with multiple objects (e.g. fonts, pictures), which may result in bugs. It is a challenge to generate suitable test cases to support fine-grained test to the PDF readers. Compared with the traditional blind fuzzing which does not utilize the information of input grammars, fuzzing with the model of the file format is an effective technique. In this paper, we leverage the structure information of the font files to select seed files among the heterogeneous fonts. A general construction method for generating suitable test cases is proposed. By this means, we can obtain test cases with low overhead. Moreover, to improve the expression ability of the font template in fuzzing PDF readers, we combine file reconstruction and template description. Our methods are evaluated on five common-used PDF readers, and proved effective in triggering crashes.","PeriodicalId":436299,"journal":{"name":"2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuzzing the Font Parser of Compound Documents\",\"authors\":\"Hongliang Liang, Yuying Wang, Huayang Cao, Jiajie Wang\",\"doi\":\"10.1109/CSCloud.2017.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, complex software (e.g. PDF readers) usually takes various inputs embedded with multiple objects (e.g. fonts, pictures), which may result in bugs. It is a challenge to generate suitable test cases to support fine-grained test to the PDF readers. Compared with the traditional blind fuzzing which does not utilize the information of input grammars, fuzzing with the model of the file format is an effective technique. In this paper, we leverage the structure information of the font files to select seed files among the heterogeneous fonts. A general construction method for generating suitable test cases is proposed. By this means, we can obtain test cases with low overhead. Moreover, to improve the expression ability of the font template in fuzzing PDF readers, we combine file reconstruction and template description. Our methods are evaluated on five common-used PDF readers, and proved effective in triggering crashes.\",\"PeriodicalId\":436299,\"journal\":{\"name\":\"2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud)\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCloud.2017.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCloud.2017.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前,复杂的软件(如PDF阅读器)通常需要嵌入多个对象(如字体、图片)的各种输入,这可能会导致错误。生成合适的测试用例来支持对PDF阅读器的细粒度测试是一个挑战。与传统的不利用输入语法信息的盲模糊测试相比,利用文件格式模型进行模糊测试是一种有效的方法。本文利用字体文件的结构信息,在异构字体中选择种子文件。提出了一种生成合适测试用例的通用构造方法。通过这种方法,我们可以获得低开销的测试用例。此外,为了提高字体模板在模糊化PDF阅读器中的表达能力,我们将文件重构和模板描述相结合。我们的方法在五种常用的PDF阅读器上进行了评估,并证明在触发崩溃方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzing the Font Parser of Compound Documents
Currently, complex software (e.g. PDF readers) usually takes various inputs embedded with multiple objects (e.g. fonts, pictures), which may result in bugs. It is a challenge to generate suitable test cases to support fine-grained test to the PDF readers. Compared with the traditional blind fuzzing which does not utilize the information of input grammars, fuzzing with the model of the file format is an effective technique. In this paper, we leverage the structure information of the font files to select seed files among the heterogeneous fonts. A general construction method for generating suitable test cases is proposed. By this means, we can obtain test cases with low overhead. Moreover, to improve the expression ability of the font template in fuzzing PDF readers, we combine file reconstruction and template description. Our methods are evaluated on five common-used PDF readers, and proved effective in triggering crashes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Framework for the Information Classification in ISO 27005 Standard Finding the Best Box-Cox Transformation in Big Data with Meta-Model Learning: A Case Study on QCT Developer Cloud Distributed Shuffle Index in the Cloud: Implementation and Evaluation Performance Study of Ceph Storage with Intel Cache Acceleration Software: Decoupling Hadoop MapReduce and HDFS over Ceph Storage Advanced Fully Homomorphic Encryption Scheme Over Real Numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1