存在磁干扰时自主水下航行器方向初始化的李群EKF

Alessandro Bucci, Leonardo Zacchini, A. Ridolfi
{"title":"存在磁干扰时自主水下航行器方向初始化的李群EKF","authors":"Alessandro Bucci, Leonardo Zacchini, A. Ridolfi","doi":"10.1109/AUV53081.2022.9965905","DOIUrl":null,"url":null,"abstract":"Orientation estimation is a fundamental aspect of navigation and motion control of Autonomous Underwater Vehicles (AUVs). This concept is especially true when position sensors are unavailable and, consequently, navigation and control rely on dead reckoning strategies; in this case, orientation estimation is used in conjunction with speed measurements to update position estimation. When unknown magnetic disturbances are present, the magnetometers of the Inertial Measurement Unit (IMU) are unusable and do not provide an accurate initialization of the vehicle heading angle. This issue can be faced by applying a generalization of the Extended Kalman Filter in which the system state and measurements evolve on matrix Lie groups. The filter is used when the AUV is moving on the sea surface and it provides an estimate of the heading offset by comparing the speed measurements acquired by the Global Positioning System (GPS) and the Doppler Velocity Log (DVL) and by fusing the data coming from the IMU and the Fiber Optic Gyroscope (FOG). The initialization procedure has been validated with a dataset acquired by FeelHippo AUV in Cecina, Italy (September 2021).","PeriodicalId":148195,"journal":{"name":"2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EKF on Lie Groups for Autonomous Underwater Vehicles orientation initialization in presence of magnetic disturbances\",\"authors\":\"Alessandro Bucci, Leonardo Zacchini, A. Ridolfi\",\"doi\":\"10.1109/AUV53081.2022.9965905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orientation estimation is a fundamental aspect of navigation and motion control of Autonomous Underwater Vehicles (AUVs). This concept is especially true when position sensors are unavailable and, consequently, navigation and control rely on dead reckoning strategies; in this case, orientation estimation is used in conjunction with speed measurements to update position estimation. When unknown magnetic disturbances are present, the magnetometers of the Inertial Measurement Unit (IMU) are unusable and do not provide an accurate initialization of the vehicle heading angle. This issue can be faced by applying a generalization of the Extended Kalman Filter in which the system state and measurements evolve on matrix Lie groups. The filter is used when the AUV is moving on the sea surface and it provides an estimate of the heading offset by comparing the speed measurements acquired by the Global Positioning System (GPS) and the Doppler Velocity Log (DVL) and by fusing the data coming from the IMU and the Fiber Optic Gyroscope (FOG). The initialization procedure has been validated with a dataset acquired by FeelHippo AUV in Cecina, Italy (September 2021).\",\"PeriodicalId\":148195,\"journal\":{\"name\":\"2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUV53081.2022.9965905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUV53081.2022.9965905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

方向估计是自主水下航行器(auv)导航和运动控制的一个基本方面。当位置传感器不可用时,这一概念尤其正确,因此,导航和控制依赖于航位推算策略;在这种情况下,方向估计与速度测量结合使用来更新位置估计。当存在未知的磁干扰时,惯性测量单元(IMU)的磁力计无法使用,并且无法提供车辆航向角的准确初始化。这一问题可以通过应用扩展卡尔曼滤波的推广来解决,其中系统状态和测量在矩阵李群上演化。该滤波器用于AUV在海面上移动时,它通过比较全球定位系统(GPS)和多普勒速度日志(DVL)获得的速度测量值以及融合来自IMU和光纤陀螺仪(FOG)的数据来提供航向偏移的估计。该初始化过程已通过2021年9月在意大利切西纳的FeelHippo AUV获取的数据集进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EKF on Lie Groups for Autonomous Underwater Vehicles orientation initialization in presence of magnetic disturbances
Orientation estimation is a fundamental aspect of navigation and motion control of Autonomous Underwater Vehicles (AUVs). This concept is especially true when position sensors are unavailable and, consequently, navigation and control rely on dead reckoning strategies; in this case, orientation estimation is used in conjunction with speed measurements to update position estimation. When unknown magnetic disturbances are present, the magnetometers of the Inertial Measurement Unit (IMU) are unusable and do not provide an accurate initialization of the vehicle heading angle. This issue can be faced by applying a generalization of the Extended Kalman Filter in which the system state and measurements evolve on matrix Lie groups. The filter is used when the AUV is moving on the sea surface and it provides an estimate of the heading offset by comparing the speed measurements acquired by the Global Positioning System (GPS) and the Doppler Velocity Log (DVL) and by fusing the data coming from the IMU and the Fiber Optic Gyroscope (FOG). The initialization procedure has been validated with a dataset acquired by FeelHippo AUV in Cecina, Italy (September 2021).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In Situ Damping Parameter Estimation for an Underwater Vehicle Using Onboard Sensors* An Open Source, Low Cost, 3D Printed Thruster For Autonomous Underwater and Surface Vehicles Multi-Robot Visual Control of Autonomous Soft Robotic Fish Power Efficiency Autonomy for Long Duration AUV Operation Experimental Verification of Underwater Glider Maneuvering in Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1