基于时空建模和空间注意的微表情识别检测

Mengjiong Bai
{"title":"基于时空建模和空间注意的微表情识别检测","authors":"Mengjiong Bai","doi":"10.1145/3382507.3421160","DOIUrl":null,"url":null,"abstract":"My PhD project aims to make contributions in the affective computing application to assist in the depression diagnosis by micro-expression recognition. My motivation is the similarities of the low-intensity facial expressions in micro-expressions and the low-intensity facial expressions (`frozen face?) in people with psycho-motor retardation caused by depression. It will focus on, firstly, investigating spatio-temporal modelling and attention systems for micro-expression recognition (MER) and, secondly, exploring the role of micro-expressions in automated depression analysis by improving deep learning architectures to detect low-intensity facial expressions. This work will investigate different deep learning architectures (e.g. Temporal Convolutional Networks (TCNN) or Gate Recurrent Unit (GRU)) and validate the results on publicly available micro-expression benchmark datasets to quantitatively analyse the robustness and accuracy of MER's contribution to improving automatic depression analysis. Moreover, video magnification as a way to enhance small movements will be combined with the deep learning methods to address the low-intensity issues in MER.","PeriodicalId":402394,"journal":{"name":"Proceedings of the 2020 International Conference on Multimodal Interaction","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Detection of Micro-expression Recognition Based on Spatio-Temporal Modelling and Spatial Attention\",\"authors\":\"Mengjiong Bai\",\"doi\":\"10.1145/3382507.3421160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"My PhD project aims to make contributions in the affective computing application to assist in the depression diagnosis by micro-expression recognition. My motivation is the similarities of the low-intensity facial expressions in micro-expressions and the low-intensity facial expressions (`frozen face?) in people with psycho-motor retardation caused by depression. It will focus on, firstly, investigating spatio-temporal modelling and attention systems for micro-expression recognition (MER) and, secondly, exploring the role of micro-expressions in automated depression analysis by improving deep learning architectures to detect low-intensity facial expressions. This work will investigate different deep learning architectures (e.g. Temporal Convolutional Networks (TCNN) or Gate Recurrent Unit (GRU)) and validate the results on publicly available micro-expression benchmark datasets to quantitatively analyse the robustness and accuracy of MER's contribution to improving automatic depression analysis. Moreover, video magnification as a way to enhance small movements will be combined with the deep learning methods to address the low-intensity issues in MER.\",\"PeriodicalId\":402394,\"journal\":{\"name\":\"Proceedings of the 2020 International Conference on Multimodal Interaction\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3382507.3421160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382507.3421160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我的博士项目是在情感计算应用方面做出贡献,通过微表情识别辅助抑郁症诊断。我的动机是微表情中的低强度面部表情与抑郁症引起的精神运动迟缓患者的低强度面部表情(“冻脸”)的相似性。首先,研究微表情识别(MER)的时空建模和注意系统;其次,通过改进深度学习架构来检测低强度面部表情,探索微表情在自动抑郁分析中的作用。这项工作将研究不同的深度学习架构(例如时间卷积网络(TCNN)或门递归单元(GRU)),并在公开可用的微表情基准数据集上验证结果,以定量分析MER对改进自动抑郁分析的鲁棒性和准确性。此外,视频放大作为一种增强小动作的方法将与深度学习方法相结合,以解决MER中的低强度问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Micro-expression Recognition Based on Spatio-Temporal Modelling and Spatial Attention
My PhD project aims to make contributions in the affective computing application to assist in the depression diagnosis by micro-expression recognition. My motivation is the similarities of the low-intensity facial expressions in micro-expressions and the low-intensity facial expressions (`frozen face?) in people with psycho-motor retardation caused by depression. It will focus on, firstly, investigating spatio-temporal modelling and attention systems for micro-expression recognition (MER) and, secondly, exploring the role of micro-expressions in automated depression analysis by improving deep learning architectures to detect low-intensity facial expressions. This work will investigate different deep learning architectures (e.g. Temporal Convolutional Networks (TCNN) or Gate Recurrent Unit (GRU)) and validate the results on publicly available micro-expression benchmark datasets to quantitatively analyse the robustness and accuracy of MER's contribution to improving automatic depression analysis. Moreover, video magnification as a way to enhance small movements will be combined with the deep learning methods to address the low-intensity issues in MER.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OpenSense: A Platform for Multimodal Data Acquisition and Behavior Perception Human-centered Multimodal Machine Intelligence Touch Recognition with Attentive End-to-End Model MORSE: MultimOdal sentiment analysis for Real-life SEttings Temporal Attention and Consistency Measuring for Video Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1