空中联合学习的激励计划

Wei Yang Bryan Lim, Zehui Xiong, Jiawen Kang, D. Niyato, Yang Zhang, Cyril Leung, C. Miao
{"title":"空中联合学习的激励计划","authors":"Wei Yang Bryan Lim, Zehui Xiong, Jiawen Kang, D. Niyato, Yang Zhang, Cyril Leung, C. Miao","doi":"10.1145/3414045.3415935","DOIUrl":null,"url":null,"abstract":"The enhanced capabilities of Unmanned Aerial Vehicles have promoted the rapid growth of the Drones-as-a-Service (DaaS) market. To enable privacy-preserving collaborative machine learning among independent DaaS providers, we propose a Federated Learning (FL) based approach. There exists a tradeoff between Service Latency (SL), i.e., the time taken for the training request to be completed, and Age of Information (AoI), i.e., the time elapsed between data aggregation to completion of the FL based training. Given that different training tasks may have varying AoI requirements, we propose a contract-theoretic task-aware incentive scheme that can be calibrated based on the weighted preferences of the model owner. Performance evaluation validates the incentive compatibility and flexibility of our contract design amid information asymmetry.","PeriodicalId":189206,"journal":{"name":"Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An incentive scheme for federated learning in the sky\",\"authors\":\"Wei Yang Bryan Lim, Zehui Xiong, Jiawen Kang, D. Niyato, Yang Zhang, Cyril Leung, C. Miao\",\"doi\":\"10.1145/3414045.3415935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The enhanced capabilities of Unmanned Aerial Vehicles have promoted the rapid growth of the Drones-as-a-Service (DaaS) market. To enable privacy-preserving collaborative machine learning among independent DaaS providers, we propose a Federated Learning (FL) based approach. There exists a tradeoff between Service Latency (SL), i.e., the time taken for the training request to be completed, and Age of Information (AoI), i.e., the time elapsed between data aggregation to completion of the FL based training. Given that different training tasks may have varying AoI requirements, we propose a contract-theoretic task-aware incentive scheme that can be calibrated based on the weighted preferences of the model owner. Performance evaluation validates the incentive compatibility and flexibility of our contract design amid information asymmetry.\",\"PeriodicalId\":189206,\"journal\":{\"name\":\"Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3414045.3415935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3414045.3415935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

无人机性能的增强促进了无人机即服务(DaaS)市场的快速增长。为了在独立的DaaS提供商之间实现保护隐私的协作机器学习,我们提出了一种基于联邦学习(FL)的方法。在服务延迟(Service Latency, SL),即完成训练请求所需的时间,和信息年龄(Age of Information, AoI),即从数据聚合到完成基于FL的训练之间所经过的时间之间存在权衡。考虑到不同的训练任务可能有不同的AoI要求,我们提出了一个契约理论的任务感知激励方案,该方案可以基于模型所有者的加权偏好进行校准。绩效评估验证了信息不对称条件下契约设计的激励兼容性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An incentive scheme for federated learning in the sky
The enhanced capabilities of Unmanned Aerial Vehicles have promoted the rapid growth of the Drones-as-a-Service (DaaS) market. To enable privacy-preserving collaborative machine learning among independent DaaS providers, we propose a Federated Learning (FL) based approach. There exists a tradeoff between Service Latency (SL), i.e., the time taken for the training request to be completed, and Age of Information (AoI), i.e., the time elapsed between data aggregation to completion of the FL based training. Given that different training tasks may have varying AoI requirements, we propose a contract-theoretic task-aware incentive scheme that can be calibrated based on the weighted preferences of the model owner. Performance evaluation validates the incentive compatibility and flexibility of our contract design amid information asymmetry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of UAV-enabled backscatter wireless communication network BioUAV An incentive scheme for federated learning in the sky Blockchain-enabled secure communication for drone delivery: a case study in COVID-like scenarios Visualization and performance analysis on 5G network slicing for drones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1