低复杂度维纳滤波用于LTE DL系统中UE-RS信道估计

M. Zourob, R. Rao
{"title":"低复杂度维纳滤波用于LTE DL系统中UE-RS信道估计","authors":"M. Zourob, R. Rao","doi":"10.1109/ISWSN.2017.8250040","DOIUrl":null,"url":null,"abstract":"Channel estimation algorithms play a key role in 3GPP Long Term Evolution (LTE) Downlink (DL) systems in facilitating coherent detection of data. In this paper, we report the performance of a new scheme for User Equipment-specific Reference Signals (UE-RS) channel estimation, which is 2 1- D Wiener filtering with linear interpolation as a less computationally complex scheme compared to 2-D Wiener filtering and interpolation. Simulations show that 2 1-D Wiener filtering with linear interpolation requires = 34% and = 2.6% of the number of computations needed by 2-D Wiener filtering with linear interpolation and Wiener interpolation, respectively. In addition, it was shown that 2 1-D Wiener filtering performance is sub-optimal when compared with the performance of 2-D Wiener filtering. Moreover, simulations indicate that the best noise reduction method is a combination of both averaging and Wiener filtering with linear interpolation, where the lower bound is a function of both SNR and the channel statistics.","PeriodicalId":390044,"journal":{"name":"2017 International Symposium on Wireless Systems and Networks (ISWSN)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lower-complexity Wiener filtering for UE-RS channel estimation in LTE DL system\",\"authors\":\"M. Zourob, R. Rao\",\"doi\":\"10.1109/ISWSN.2017.8250040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel estimation algorithms play a key role in 3GPP Long Term Evolution (LTE) Downlink (DL) systems in facilitating coherent detection of data. In this paper, we report the performance of a new scheme for User Equipment-specific Reference Signals (UE-RS) channel estimation, which is 2 1- D Wiener filtering with linear interpolation as a less computationally complex scheme compared to 2-D Wiener filtering and interpolation. Simulations show that 2 1-D Wiener filtering with linear interpolation requires = 34% and = 2.6% of the number of computations needed by 2-D Wiener filtering with linear interpolation and Wiener interpolation, respectively. In addition, it was shown that 2 1-D Wiener filtering performance is sub-optimal when compared with the performance of 2-D Wiener filtering. Moreover, simulations indicate that the best noise reduction method is a combination of both averaging and Wiener filtering with linear interpolation, where the lower bound is a function of both SNR and the channel statistics.\",\"PeriodicalId\":390044,\"journal\":{\"name\":\"2017 International Symposium on Wireless Systems and Networks (ISWSN)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Wireless Systems and Networks (ISWSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWSN.2017.8250040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Wireless Systems and Networks (ISWSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWSN.2017.8250040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

信道估计算法在3GPP长期演进(LTE)下行链路(DL)系统中起着促进数据相干检测的关键作用。在本文中,我们报告了一种用于用户设备特定参考信号(UE-RS)信道估计的新方案的性能,该方案是21维维纳滤波与线性插值,与二维维纳滤波和插值相比,它的计算复杂度更低。仿真结果表明,采用线性插值进行2维维纳滤波所需的计算量分别是采用线性插值和维纳插值进行2维维纳滤波所需计算量的34%和2.6%。此外,与二维维纳滤波的性能相比,21维维纳滤波的性能是次优的。此外,仿真表明,最好的降噪方法是将平均和维纳滤波与线性插值相结合,其中下界是信噪比和信道统计量的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lower-complexity Wiener filtering for UE-RS channel estimation in LTE DL system
Channel estimation algorithms play a key role in 3GPP Long Term Evolution (LTE) Downlink (DL) systems in facilitating coherent detection of data. In this paper, we report the performance of a new scheme for User Equipment-specific Reference Signals (UE-RS) channel estimation, which is 2 1- D Wiener filtering with linear interpolation as a less computationally complex scheme compared to 2-D Wiener filtering and interpolation. Simulations show that 2 1-D Wiener filtering with linear interpolation requires = 34% and = 2.6% of the number of computations needed by 2-D Wiener filtering with linear interpolation and Wiener interpolation, respectively. In addition, it was shown that 2 1-D Wiener filtering performance is sub-optimal when compared with the performance of 2-D Wiener filtering. Moreover, simulations indicate that the best noise reduction method is a combination of both averaging and Wiener filtering with linear interpolation, where the lower bound is a function of both SNR and the channel statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-operator spectrum sharing in next generation wireless communications networks: A short review and roadmap to future A wavelet-based protection scheme for smart grids Automatic road accident detection techniques: A brief survey Dual-polarized data dense chipless RFID tag towards IoT applications Efficiency optimization under variable packet error rate for wireless LAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1