无词汇特征的普通话演讲摘要

Jian Zhang, Huaqiang Yuan
{"title":"无词汇特征的普通话演讲摘要","authors":"Jian Zhang, Huaqiang Yuan","doi":"10.1109/IALP.2013.48","DOIUrl":null,"url":null,"abstract":"We present the first known empirical study on speech summarization without lexical features for Mandarin presentation speeches. We evaluate acoustic, lexical and structural features as predictors of summary sentences. We find that the summarizer yields good performance at the average F-measure of 0.625 even by using the combination of acoustic and structural features alone, which are independent of lexical features. In addition, we show that our summarizer performs surprisingly well at the average F-measure of 0.513 by using only acoustic features. These findings enable us to summarize speech without placing a stringent demand on speech recognition accuracy.","PeriodicalId":413833,"journal":{"name":"2013 International Conference on Asian Language Processing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Speech Summarization without Lexical Features for Mandarin Presentation Speech\",\"authors\":\"Jian Zhang, Huaqiang Yuan\",\"doi\":\"10.1109/IALP.2013.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first known empirical study on speech summarization without lexical features for Mandarin presentation speeches. We evaluate acoustic, lexical and structural features as predictors of summary sentences. We find that the summarizer yields good performance at the average F-measure of 0.625 even by using the combination of acoustic and structural features alone, which are independent of lexical features. In addition, we show that our summarizer performs surprisingly well at the average F-measure of 0.513 by using only acoustic features. These findings enable us to summarize speech without placing a stringent demand on speech recognition accuracy.\",\"PeriodicalId\":413833,\"journal\":{\"name\":\"2013 International Conference on Asian Language Processing\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2013.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2013.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文首次对汉语演讲中不含词汇特征的演讲摘要进行实证研究。我们评估了声学、词汇和结构特征作为总结句的预测因素。我们发现,即使单独使用声学和结构特征的组合,总结器也能在0.625的平均f测量值下产生良好的性能,而声学和结构特征独立于词汇特征。此外,我们还表明,仅使用声学特征,我们的摘要器在0.513的平均f测量值上表现得非常好。这些发现使我们能够在不严格要求语音识别准确性的情况下总结语音。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speech Summarization without Lexical Features for Mandarin Presentation Speech
We present the first known empirical study on speech summarization without lexical features for Mandarin presentation speeches. We evaluate acoustic, lexical and structural features as predictors of summary sentences. We find that the summarizer yields good performance at the average F-measure of 0.625 even by using the combination of acoustic and structural features alone, which are independent of lexical features. In addition, we show that our summarizer performs surprisingly well at the average F-measure of 0.513 by using only acoustic features. These findings enable us to summarize speech without placing a stringent demand on speech recognition accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Judgment, Extraction and Selective Restriction of Chinese Eventive Verb Categorization and Identification of Fragments with Shi Plus Punctuation Feature Abstraction for Lightweight and Accurate Chinese Word Segmentation The Comparative Research on the Segmentation Strategies of Tibetan Bounded-Variant Forms An Empirical Evaluation of Dimensionality Reduction Using Latent Semantic Analysis on Hindi Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1