M. King, W. Bachalo, D. Bell, Laura-Cheri King-Steen
{"title":"NASA结冰研究隧道韦伯数测试","authors":"M. King, W. Bachalo, D. Bell, Laura-Cheri King-Steen","doi":"10.2514/6.2018-3184","DOIUrl":null,"url":null,"abstract":"A study of the Weber Number effects on droplets in the NASA Icing Research Tunnel is described. The work focuses on examining the droplet Weber Number effects observed for droplets accelerated by air flow in the contraction section of the Icing Research Tunnel to the test section. These results will aid in Supercooled Large Drop facility design studies. Measurements acquired with the Phase Doppler Interferometer and High Speed Imaging Dual Range Flight Probes at a series of locations through the contraction are presented alongside a 1D numerical model developed during this study to aid interpretation of the experimental results. An estimate of the maximum Weber Number observed in the Icing Research Tunnel for varying drop sizes up to 1000 μm is presented and provided for incorporation into future design studies. Finally, experimental results coupled with a numerical model indicate that breakup of drops up to 1000 μm is not occurring in the NASA Icing Research Tunnel up to 129 m/s.","PeriodicalId":419456,"journal":{"name":"2018 Atmospheric and Space Environments Conference","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Weber Number Tests in the NASA Icing Research Tunnel\",\"authors\":\"M. King, W. Bachalo, D. Bell, Laura-Cheri King-Steen\",\"doi\":\"10.2514/6.2018-3184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A study of the Weber Number effects on droplets in the NASA Icing Research Tunnel is described. The work focuses on examining the droplet Weber Number effects observed for droplets accelerated by air flow in the contraction section of the Icing Research Tunnel to the test section. These results will aid in Supercooled Large Drop facility design studies. Measurements acquired with the Phase Doppler Interferometer and High Speed Imaging Dual Range Flight Probes at a series of locations through the contraction are presented alongside a 1D numerical model developed during this study to aid interpretation of the experimental results. An estimate of the maximum Weber Number observed in the Icing Research Tunnel for varying drop sizes up to 1000 μm is presented and provided for incorporation into future design studies. Finally, experimental results coupled with a numerical model indicate that breakup of drops up to 1000 μm is not occurring in the NASA Icing Research Tunnel up to 129 m/s.\",\"PeriodicalId\":419456,\"journal\":{\"name\":\"2018 Atmospheric and Space Environments Conference\",\"volume\":\"203 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Atmospheric and Space Environments Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/6.2018-3184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Atmospheric and Space Environments Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2018-3184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weber Number Tests in the NASA Icing Research Tunnel
A study of the Weber Number effects on droplets in the NASA Icing Research Tunnel is described. The work focuses on examining the droplet Weber Number effects observed for droplets accelerated by air flow in the contraction section of the Icing Research Tunnel to the test section. These results will aid in Supercooled Large Drop facility design studies. Measurements acquired with the Phase Doppler Interferometer and High Speed Imaging Dual Range Flight Probes at a series of locations through the contraction are presented alongside a 1D numerical model developed during this study to aid interpretation of the experimental results. An estimate of the maximum Weber Number observed in the Icing Research Tunnel for varying drop sizes up to 1000 μm is presented and provided for incorporation into future design studies. Finally, experimental results coupled with a numerical model indicate that breakup of drops up to 1000 μm is not occurring in the NASA Icing Research Tunnel up to 129 m/s.