实践——展示一种基于神经网络的数据中心工作负载鲁棒预测框架

T. Scherer, Ji Xue, Feng Yan, R. Birke, L. Chen, E. Smirni
{"title":"实践——展示一种基于神经网络的数据中心工作负载鲁棒预测框架","authors":"T. Scherer, Ji Xue, Feng Yan, R. Birke, L. Chen, E. Smirni","doi":"10.1109/UCC.2015.65","DOIUrl":null,"url":null,"abstract":"We present a web based tool to demonstrate PRACTISE, a neural network based framework for efficient and accurate prediction of server workload time series in data centers. For the evaluation, we focus on resource utilization traces of CPU, memory, disk, and network. Compared with ARIMA and baseline neural network models, PRACTISE achieves significantly smaller average prediction errors. We demonstrate the benefits of PRACTISE in two scenarios: i) using recorded resource utilization traces from private cloud data centers, and ii) using real-time data collected from live data center systems.","PeriodicalId":381279,"journal":{"name":"2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PRACTISE -- Demonstrating a Neural Network Based Framework for Robust Prediction of Data Center Workload\",\"authors\":\"T. Scherer, Ji Xue, Feng Yan, R. Birke, L. Chen, E. Smirni\",\"doi\":\"10.1109/UCC.2015.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a web based tool to demonstrate PRACTISE, a neural network based framework for efficient and accurate prediction of server workload time series in data centers. For the evaluation, we focus on resource utilization traces of CPU, memory, disk, and network. Compared with ARIMA and baseline neural network models, PRACTISE achieves significantly smaller average prediction errors. We demonstrate the benefits of PRACTISE in two scenarios: i) using recorded resource utilization traces from private cloud data centers, and ii) using real-time data collected from live data center systems.\",\"PeriodicalId\":381279,\"journal\":{\"name\":\"2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCC.2015.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC.2015.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一个基于web的工具来演示实践,一个基于神经网络的框架,用于有效和准确地预测数据中心服务器工作负载时间序列。对于评估,我们关注CPU、内存、磁盘和网络的资源利用轨迹。与ARIMA和基线神经网络模型相比,practice的平均预测误差明显减小。我们在两个场景中展示了实践的好处:i)使用私有云数据中心记录的资源利用轨迹,ii)使用从实时数据中心系统收集的实时数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PRACTISE -- Demonstrating a Neural Network Based Framework for Robust Prediction of Data Center Workload
We present a web based tool to demonstrate PRACTISE, a neural network based framework for efficient and accurate prediction of server workload time series in data centers. For the evaluation, we focus on resource utilization traces of CPU, memory, disk, and network. Compared with ARIMA and baseline neural network models, PRACTISE achieves significantly smaller average prediction errors. We demonstrate the benefits of PRACTISE in two scenarios: i) using recorded resource utilization traces from private cloud data centers, and ii) using real-time data collected from live data center systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CYCLONE Unified Deployment and Management of Federated, Multi-cloud Applications Cloud Orchestration Features: Are Tools Fit for Purpose? Efficient Update of Encrypted Files for Cloud Storage Adaptive Performance Isolation Middleware for Multi-tenant SaaS Agent-Based Modelling as a Service on Amazon EC2: Opportunities and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1