一种全局最优邻域定位方法

Qiwen Yang, Yan Liu, S. Wang, Yunchan Xue
{"title":"一种全局最优邻域定位方法","authors":"Qiwen Yang, Yan Liu, S. Wang, Yunchan Xue","doi":"10.1109/ICNC.2012.6234655","DOIUrl":null,"url":null,"abstract":"Locating the neighborhood of global optimum (NGO) is critical for global optimization. For this purpose, the relationship between the barycenter and the global maximum is investigated in this paper. And a space transform technique is proposed such that the barycenter of the transformed space is more close to NGO. Consequently, NGO can be readily located by means of estimating the barycenter of search space. The validity of the proposed method is demonstrated by multimodal function optimization.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A method to locate neighborhood of global optimum\",\"authors\":\"Qiwen Yang, Yan Liu, S. Wang, Yunchan Xue\",\"doi\":\"10.1109/ICNC.2012.6234655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Locating the neighborhood of global optimum (NGO) is critical for global optimization. For this purpose, the relationship between the barycenter and the global maximum is investigated in this paper. And a space transform technique is proposed such that the barycenter of the transformed space is more close to NGO. Consequently, NGO can be readily located by means of estimating the barycenter of search space. The validity of the proposed method is demonstrated by multimodal function optimization.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

全局最优邻域的定位是全局优化的关键。为此,本文研究了重心与全局极大值的关系。并提出了一种空间变换技术,使变换后的空间重心更接近于NGO。因此,可以很容易地通过估计搜索空间的重心来定位非政府组织。通过多模态函数优化验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A method to locate neighborhood of global optimum
Locating the neighborhood of global optimum (NGO) is critical for global optimization. For this purpose, the relationship between the barycenter and the global maximum is investigated in this paper. And a space transform technique is proposed such that the barycenter of the transformed space is more close to NGO. Consequently, NGO can be readily located by means of estimating the barycenter of search space. The validity of the proposed method is demonstrated by multimodal function optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The model about the affection regulation based on partial least regression in the Human-computer interaction HSAQEA based reliability redundancy optimization for complex system Static error correction of the sensor based on SVR Hybrid flexible neural tree for exchange rates forecasting Some comparison on whole-proteome phylogeny of large dsDNA viruses based on dynamical language approach and feature frequency profiles method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1