基于新兴图像和拓扑数据分析(TDA)技术的人机交互证明

Maria Alejandra Osorio Angarita, E. Izquierdo, A. M. Cañadas
{"title":"基于新兴图像和拓扑数据分析(TDA)技术的人机交互证明","authors":"Maria Alejandra Osorio Angarita, E. Izquierdo, A. M. Cañadas","doi":"10.1109/CSNet47905.2019.9108952","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an algorithm to generate emerging images which can be used to implement Human Interaction Proofs (HIPs) based on this kind of images. In a general setting we propose the design of proofs easy to solve by human beings but hard to solve by computer algorithms. These tests are able to tell apart human from bots (or robots) in order to protect online environments (as social networks, wikis, ticket sellers, free-email providers, etc) from different kind of security threats.Our proposal uses tools and techniques arising from TDA (point clouds, simplicial complexes and spatial triangulation among others), in order to create shapes which can be identified by humans as recognizable images hard to detect by machines.","PeriodicalId":350566,"journal":{"name":"2019 3rd Cyber Security in Networking Conference (CSNet)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Human Interaction Proofs (HIPs) based on Emerging Images and Topological Data Analysis (TDA) Techniques\",\"authors\":\"Maria Alejandra Osorio Angarita, E. Izquierdo, A. M. Cañadas\",\"doi\":\"10.1109/CSNet47905.2019.9108952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce an algorithm to generate emerging images which can be used to implement Human Interaction Proofs (HIPs) based on this kind of images. In a general setting we propose the design of proofs easy to solve by human beings but hard to solve by computer algorithms. These tests are able to tell apart human from bots (or robots) in order to protect online environments (as social networks, wikis, ticket sellers, free-email providers, etc) from different kind of security threats.Our proposal uses tools and techniques arising from TDA (point clouds, simplicial complexes and spatial triangulation among others), in order to create shapes which can be identified by humans as recognizable images hard to detect by machines.\",\"PeriodicalId\":350566,\"journal\":{\"name\":\"2019 3rd Cyber Security in Networking Conference (CSNet)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd Cyber Security in Networking Conference (CSNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNet47905.2019.9108952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd Cyber Security in Networking Conference (CSNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNet47905.2019.9108952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种生成新兴图像的算法,该算法可用于基于此类图像实现人机交互证明(HIPs)。在一般情况下,我们建议设计易于由人类解决但难以由计算机算法解决的证明。这些测试能够区分人类和机器人(或机器人),以保护在线环境(如社交网络、维基、售票员、免费电子邮件提供商等)免受不同类型的安全威胁。我们的提案使用了来自TDA(点云、简单复合体和空间三角测量等)的工具和技术,以创建可以被人类识别为难以被机器识别的可识别图像的形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human Interaction Proofs (HIPs) based on Emerging Images and Topological Data Analysis (TDA) Techniques
In this paper, we introduce an algorithm to generate emerging images which can be used to implement Human Interaction Proofs (HIPs) based on this kind of images. In a general setting we propose the design of proofs easy to solve by human beings but hard to solve by computer algorithms. These tests are able to tell apart human from bots (or robots) in order to protect online environments (as social networks, wikis, ticket sellers, free-email providers, etc) from different kind of security threats.Our proposal uses tools and techniques arising from TDA (point clouds, simplicial complexes and spatial triangulation among others), in order to create shapes which can be identified by humans as recognizable images hard to detect by machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bluetooth Low Energy Makes “Just Works” Not Work CSNet 2019 Program TAG: Topological Attack Graph Analysis Tool IoT Cybersecurity based Smart Home Intrusion Prevention System A Blockchain-Encryption-Based Approach to Protect Fog Federations from Rogue Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1