Tianrui Chai, Annan Li, Shaoxiong Zhang, Zilong Li, Yunhong Wang
{"title":"改进步态识别的拉格朗日运动分析和视图嵌入","authors":"Tianrui Chai, Annan Li, Shaoxiong Zhang, Zilong Li, Yunhong Wang","doi":"10.1109/CVPR52688.2022.01961","DOIUrl":null,"url":null,"abstract":"Gait is considered the walking pattern of human body, which includes both shape and motion cues. However, the main-stream appearance-based methods for gait recognition rely on the shape of silhouette. It is unclear whether motion can be explicitly represented in the gait sequence modeling. In this paper, we analyzed human walking using the Lagrange's equation and come to the conclusion that second-order information in the temporal dimension is necessary for identification. We designed a second-order motion extraction module based on the conclusions drawn. Also, a light weight view-embedding module is designed by analyzing the problem that current methods to cross-view task do not take view itself into consideration explicitly. Experiments on CASIA-B and OU-MVLP datasets show the effectiveness of our method and some visualization for extracted motion are done to show the interpretability of our motion extraction module.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Lagrange Motion Analysis and View Embeddings for Improved Gait Recognition\",\"authors\":\"Tianrui Chai, Annan Li, Shaoxiong Zhang, Zilong Li, Yunhong Wang\",\"doi\":\"10.1109/CVPR52688.2022.01961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gait is considered the walking pattern of human body, which includes both shape and motion cues. However, the main-stream appearance-based methods for gait recognition rely on the shape of silhouette. It is unclear whether motion can be explicitly represented in the gait sequence modeling. In this paper, we analyzed human walking using the Lagrange's equation and come to the conclusion that second-order information in the temporal dimension is necessary for identification. We designed a second-order motion extraction module based on the conclusions drawn. Also, a light weight view-embedding module is designed by analyzing the problem that current methods to cross-view task do not take view itself into consideration explicitly. Experiments on CASIA-B and OU-MVLP datasets show the effectiveness of our method and some visualization for extracted motion are done to show the interpretability of our motion extraction module.\",\"PeriodicalId\":355552,\"journal\":{\"name\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52688.2022.01961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.01961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lagrange Motion Analysis and View Embeddings for Improved Gait Recognition
Gait is considered the walking pattern of human body, which includes both shape and motion cues. However, the main-stream appearance-based methods for gait recognition rely on the shape of silhouette. It is unclear whether motion can be explicitly represented in the gait sequence modeling. In this paper, we analyzed human walking using the Lagrange's equation and come to the conclusion that second-order information in the temporal dimension is necessary for identification. We designed a second-order motion extraction module based on the conclusions drawn. Also, a light weight view-embedding module is designed by analyzing the problem that current methods to cross-view task do not take view itself into consideration explicitly. Experiments on CASIA-B and OU-MVLP datasets show the effectiveness of our method and some visualization for extracted motion are done to show the interpretability of our motion extraction module.