脑MR图像分类在ADHD诊断中的应用

Sahar Abdolmaleki, M. S. Abadeh
{"title":"脑MR图像分类在ADHD诊断中的应用","authors":"Sahar Abdolmaleki, M. S. Abadeh","doi":"10.1109/MVIP49855.2020.9116877","DOIUrl":null,"url":null,"abstract":"Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorder in childhood and adolescence. ADHD diagnosis currently includes psychological tests and depends on ratings of behavioral symptoms, which can be unreliable. Thus, an objective diagnostic tool based on non-invasive imaging can improve the understanding and diagnosis of ADHD. The purpose of this study is classifying brain images by using Artificial Intelligence methods such as clinical decision support system for the diagnosis of ADHD. For this purpose and according to a medical imaging classification system, firstly, image pre-processing is done. Then, a deep multi-modal 3D CNN is trained on GM from structural and fALFF from functional MRI using ADHD-200 training dataset. Finally, with the intention of classifying the extracted features, early and late fusion schemes are employed, and the output scores are classified with the SVM, KNN and LDA algorithms. The evaluation of the proposed approach on the ADHD-200 testing dataset revealed that the presence of personal characteristics alone increased the classification accuracy by 3.79%. In addition, using a combination of early, late fusion and personal characteristics together improved the accuracy of the classification by 5.84%. Among the three classifiers LDA showed better results and achieved a classification accuracy of 74.93%. The comparison of results showed that the combination of early and late fusion as well as considering personal characteristics has a significant effect on enhancing classification accuracy. As a result of this, the reliability of this medical decision support system is increased.","PeriodicalId":255375,"journal":{"name":"2020 International Conference on Machine Vision and Image Processing (MVIP)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Brain MR Image Classification for ADHD Diagnosis Using Deep Neural Networks\",\"authors\":\"Sahar Abdolmaleki, M. S. Abadeh\",\"doi\":\"10.1109/MVIP49855.2020.9116877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorder in childhood and adolescence. ADHD diagnosis currently includes psychological tests and depends on ratings of behavioral symptoms, which can be unreliable. Thus, an objective diagnostic tool based on non-invasive imaging can improve the understanding and diagnosis of ADHD. The purpose of this study is classifying brain images by using Artificial Intelligence methods such as clinical decision support system for the diagnosis of ADHD. For this purpose and according to a medical imaging classification system, firstly, image pre-processing is done. Then, a deep multi-modal 3D CNN is trained on GM from structural and fALFF from functional MRI using ADHD-200 training dataset. Finally, with the intention of classifying the extracted features, early and late fusion schemes are employed, and the output scores are classified with the SVM, KNN and LDA algorithms. The evaluation of the proposed approach on the ADHD-200 testing dataset revealed that the presence of personal characteristics alone increased the classification accuracy by 3.79%. In addition, using a combination of early, late fusion and personal characteristics together improved the accuracy of the classification by 5.84%. Among the three classifiers LDA showed better results and achieved a classification accuracy of 74.93%. The comparison of results showed that the combination of early and late fusion as well as considering personal characteristics has a significant effect on enhancing classification accuracy. As a result of this, the reliability of this medical decision support system is increased.\",\"PeriodicalId\":255375,\"journal\":{\"name\":\"2020 International Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVIP49855.2020.9116877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP49855.2020.9116877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

注意缺陷/多动障碍(ADHD)是儿童和青少年最常见的神经发育障碍之一。目前,多动症的诊断包括心理测试,并取决于行为症状的评分,这可能是不可靠的。因此,一种基于非侵入性影像学的客观诊断工具可以提高对ADHD的认识和诊断。本研究的目的是利用临床决策支持系统等人工智能方法对ADHD的脑图像进行分类。为此,根据医学影像分类系统,首先对图像进行预处理。然后,使用ADHD-200训练数据集对来自结构的GM和来自功能MRI的fALFF进行深度多模态3D CNN训练。最后,为了对提取的特征进行分类,采用了早期和晚期融合方案,并使用SVM、KNN和LDA算法对输出分数进行分类。对ADHD-200测试数据集的评估表明,单独存在个人特征将分类准确率提高了3.79%。此外,结合早期、晚期融合和个人特征,将分类准确率提高了5.84%。在这三种分类器中,LDA表现出较好的分类效果,分类准确率达到74.93%。结果表明,结合早期和晚期融合以及考虑个人特征对提高分类精度有显著效果。因此,该医疗决策支持系统的可靠性得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain MR Image Classification for ADHD Diagnosis Using Deep Neural Networks
Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorder in childhood and adolescence. ADHD diagnosis currently includes psychological tests and depends on ratings of behavioral symptoms, which can be unreliable. Thus, an objective diagnostic tool based on non-invasive imaging can improve the understanding and diagnosis of ADHD. The purpose of this study is classifying brain images by using Artificial Intelligence methods such as clinical decision support system for the diagnosis of ADHD. For this purpose and according to a medical imaging classification system, firstly, image pre-processing is done. Then, a deep multi-modal 3D CNN is trained on GM from structural and fALFF from functional MRI using ADHD-200 training dataset. Finally, with the intention of classifying the extracted features, early and late fusion schemes are employed, and the output scores are classified with the SVM, KNN and LDA algorithms. The evaluation of the proposed approach on the ADHD-200 testing dataset revealed that the presence of personal characteristics alone increased the classification accuracy by 3.79%. In addition, using a combination of early, late fusion and personal characteristics together improved the accuracy of the classification by 5.84%. Among the three classifiers LDA showed better results and achieved a classification accuracy of 74.93%. The comparison of results showed that the combination of early and late fusion as well as considering personal characteristics has a significant effect on enhancing classification accuracy. As a result of this, the reliability of this medical decision support system is increased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Offline Handwritten Signature Verification and Recognition Based on Deep Transfer Learning A High-Accuracy, Cost-Effective People Counting Solution Based on Visual Depth Data Source Camera Identification Using WLBP Descriptor Convolutional Neural Network for Building Extraction from High-Resolution Remote Sensing Images PCB Defect Detection Using Denoising Convolutional Autoencoders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1