基于邻域竞争模型的验证方法研究

Chengli Sun, Gang Liu, Jun Guo
{"title":"基于邻域竞争模型的验证方法研究","authors":"Chengli Sun, Gang Liu, Jun Guo","doi":"10.1109/ICNC.2007.148","DOIUrl":null,"url":null,"abstract":"Utterance verification (UV) is an important portion in an intelligent speech recognition system, which role is determine if the input speech actual includes the word sound(s). In this study, we address the UV problem in the model neighborhood information viewpoint. We present a new robust verification method which can enhance the capability of UV in noise or other mismatch conditions by using the neighboring competing models information. Comparing with tradition likelihood ratio test (LRT) and online garbage model methods, experimental results show, the performance of proposed method is comparable to the LRT method in clean speech conditions, but explicitly outperforms other verification approaches in the noise speech conditions.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Neighborhood Competing Models Based Verification Method\",\"authors\":\"Chengli Sun, Gang Liu, Jun Guo\",\"doi\":\"10.1109/ICNC.2007.148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utterance verification (UV) is an important portion in an intelligent speech recognition system, which role is determine if the input speech actual includes the word sound(s). In this study, we address the UV problem in the model neighborhood information viewpoint. We present a new robust verification method which can enhance the capability of UV in noise or other mismatch conditions by using the neighboring competing models information. Comparing with tradition likelihood ratio test (LRT) and online garbage model methods, experimental results show, the performance of proposed method is comparable to the LRT method in clean speech conditions, but explicitly outperforms other verification approaches in the noise speech conditions.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语音验证(UV)是智能语音识别系统的重要组成部分,它的作用是判断输入的语音是否包含单词的声音。在本研究中,我们从模型邻域信息的角度来解决UV问题。我们提出了一种新的鲁棒验证方法,利用相邻的竞争模型信息增强了紫外在噪声或其他不匹配条件下的能力。与传统的似然比检验(LRT)和在线垃圾模型方法进行比较,实验结果表明,该方法在清洁语音条件下的性能与LRT方法相当,而在噪声语音条件下的性能明显优于其他验证方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Study of Neighborhood Competing Models Based Verification Method
Utterance verification (UV) is an important portion in an intelligent speech recognition system, which role is determine if the input speech actual includes the word sound(s). In this study, we address the UV problem in the model neighborhood information viewpoint. We present a new robust verification method which can enhance the capability of UV in noise or other mismatch conditions by using the neighboring competing models information. Comparing with tradition likelihood ratio test (LRT) and online garbage model methods, experimental results show, the performance of proposed method is comparable to the LRT method in clean speech conditions, but explicitly outperforms other verification approaches in the noise speech conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1