软件组合复杂度控制与恶意软件行为计算

M. Pleszkoch, R. Linger
{"title":"软件组合复杂度控制与恶意软件行为计算","authors":"M. Pleszkoch, R. Linger","doi":"10.1145/2746266.2746281","DOIUrl":null,"url":null,"abstract":"Virtually all software is out of intellectual control in that no one knows its full behavior. Software Behavior Computation (SBC) is a new technology for understanding everything software does. SBC applies the mathematics of denotational semantics implemented by function composition in Functional Trace Tables (FTTs) to compute the behavior of programs, expressed as disjoint cases of conditional concurrent assignments. In some circumstances, combinatorial explosions in the number of cases can occur when calculating the behavior of sequences of multiple branching structures. This paper describes computational methods that avoid combinatorial explosions. The predicates that control branching structures such as ifthenelses can be organized into three categories: 1) Independent, resulting in no behavior case explosion, 2) Coordinated, resulting in two behavior cases, or 3) Goal-oriented, with potential exponential growth in the number of cases. Traditional FTT-based behavior computation can be augmented by two additional computational methods, namely, Single-Value Function Abstractions (SVFAs) and, introduced in this paper, Relational Trace Tables (RTTs). These methods can be applied to the three predicate categories to avoid combinatorial growth in behavior cases while maintaining mathematical correctness.","PeriodicalId":106769,"journal":{"name":"Proceedings of the 10th Annual Cyber and Information Security Research Conference","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Controlling Combinatorial Complexity in Software and Malware Behavior Computation\",\"authors\":\"M. Pleszkoch, R. Linger\",\"doi\":\"10.1145/2746266.2746281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtually all software is out of intellectual control in that no one knows its full behavior. Software Behavior Computation (SBC) is a new technology for understanding everything software does. SBC applies the mathematics of denotational semantics implemented by function composition in Functional Trace Tables (FTTs) to compute the behavior of programs, expressed as disjoint cases of conditional concurrent assignments. In some circumstances, combinatorial explosions in the number of cases can occur when calculating the behavior of sequences of multiple branching structures. This paper describes computational methods that avoid combinatorial explosions. The predicates that control branching structures such as ifthenelses can be organized into three categories: 1) Independent, resulting in no behavior case explosion, 2) Coordinated, resulting in two behavior cases, or 3) Goal-oriented, with potential exponential growth in the number of cases. Traditional FTT-based behavior computation can be augmented by two additional computational methods, namely, Single-Value Function Abstractions (SVFAs) and, introduced in this paper, Relational Trace Tables (RTTs). These methods can be applied to the three predicate categories to avoid combinatorial growth in behavior cases while maintaining mathematical correctness.\",\"PeriodicalId\":106769,\"journal\":{\"name\":\"Proceedings of the 10th Annual Cyber and Information Security Research Conference\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th Annual Cyber and Information Security Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746266.2746281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th Annual Cyber and Information Security Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746266.2746281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

实际上,所有的软件都不受智力控制,因为没有人知道它的全部行为。软件行为计算(SBC)是一种用于理解软件行为的新技术。SBC应用由功能跟踪表(FTTs)中的函数组合实现的指示语义的数学来计算程序的行为,表示为条件并发赋值的不相交情况。在某些情况下,在计算多分支结构序列的行为时,可能会出现数目上的组合爆炸。本文描述了避免组合爆炸的计算方法。控制分支结构(如ifthenelses)的谓词可以分为三类:1)独立的,导致没有行为案例爆炸;2)协调的,导致两个行为案例;3)目标导向的,具有案例数量呈指数增长的潜力。传统的基于ftt的行为计算可以通过两种额外的计算方法来增强,即单值函数抽象(SVFAs)和本文介绍的关系跟踪表(rtt)。这些方法可以应用于三个谓词类别,以避免行为案例中的组合增长,同时保持数学正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controlling Combinatorial Complexity in Software and Malware Behavior Computation
Virtually all software is out of intellectual control in that no one knows its full behavior. Software Behavior Computation (SBC) is a new technology for understanding everything software does. SBC applies the mathematics of denotational semantics implemented by function composition in Functional Trace Tables (FTTs) to compute the behavior of programs, expressed as disjoint cases of conditional concurrent assignments. In some circumstances, combinatorial explosions in the number of cases can occur when calculating the behavior of sequences of multiple branching structures. This paper describes computational methods that avoid combinatorial explosions. The predicates that control branching structures such as ifthenelses can be organized into three categories: 1) Independent, resulting in no behavior case explosion, 2) Coordinated, resulting in two behavior cases, or 3) Goal-oriented, with potential exponential growth in the number of cases. Traditional FTT-based behavior computation can be augmented by two additional computational methods, namely, Single-Value Function Abstractions (SVFAs) and, introduced in this paper, Relational Trace Tables (RTTs). These methods can be applied to the three predicate categories to avoid combinatorial growth in behavior cases while maintaining mathematical correctness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automobile ECU Design to Avoid Data Tampering Controlling Combinatorial Complexity in Software and Malware Behavior Computation On the Design of Jamming-Aware Safety Applications in VANETs Android Malware Static Analysis Techniques OPNET/Simulink Based Testbed for Disturbance Detection in the Smart Grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1