基于内禀模态函数技术的主动噪声控制

Neha Narang, M. Sharma, R. Vig
{"title":"基于内禀模态函数技术的主动噪声控制","authors":"Neha Narang, M. Sharma, R. Vig","doi":"10.1109/CICN.2013.52","DOIUrl":null,"url":null,"abstract":"Active noise control accuracy depends on how much destructive interference exists between the primary noise and the noise (anti noise) generated by secondary source. In this paper firstly multilayer perceptron (MLP) neural network is designed and trained with extracted features of noise signals for classification and then Empirical Mode Decomposition (EMD) is used for active noise control. The noise signals of m109 tank and F16 cockpit are selected from SPIB database. The results of simulation show that the EMD technique is capable of suppressing the non linear and non stationary noise signals. The EMD technique has performed well in noise attenuation.","PeriodicalId":415274,"journal":{"name":"2013 5th International Conference on Computational Intelligence and Communication Networks","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Active Noise Control Using Intrinsic Mode Function Technique\",\"authors\":\"Neha Narang, M. Sharma, R. Vig\",\"doi\":\"10.1109/CICN.2013.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active noise control accuracy depends on how much destructive interference exists between the primary noise and the noise (anti noise) generated by secondary source. In this paper firstly multilayer perceptron (MLP) neural network is designed and trained with extracted features of noise signals for classification and then Empirical Mode Decomposition (EMD) is used for active noise control. The noise signals of m109 tank and F16 cockpit are selected from SPIB database. The results of simulation show that the EMD technique is capable of suppressing the non linear and non stationary noise signals. The EMD technique has performed well in noise attenuation.\",\"PeriodicalId\":415274,\"journal\":{\"name\":\"2013 5th International Conference on Computational Intelligence and Communication Networks\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th International Conference on Computational Intelligence and Communication Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN.2013.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Computational Intelligence and Communication Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2013.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

主动噪声控制的精度取决于主噪声与次源产生的噪声(抗噪声)之间存在多大的相消干扰。本文首先利用提取的噪声信号特征设计并训练多层感知器神经网络进行分类,然后利用经验模态分解(EMD)进行主动噪声控制。m109坦克和F16座舱噪声信号选择自SPIB数据库。仿真结果表明,EMD技术能够有效抑制非线性和非平稳噪声信号。EMD技术在降噪方面取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active Noise Control Using Intrinsic Mode Function Technique
Active noise control accuracy depends on how much destructive interference exists between the primary noise and the noise (anti noise) generated by secondary source. In this paper firstly multilayer perceptron (MLP) neural network is designed and trained with extracted features of noise signals for classification and then Empirical Mode Decomposition (EMD) is used for active noise control. The noise signals of m109 tank and F16 cockpit are selected from SPIB database. The results of simulation show that the EMD technique is capable of suppressing the non linear and non stationary noise signals. The EMD technique has performed well in noise attenuation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Model of Legacy Software Reuse Based on Code Clone Detection QoS in Interconnection of Next Generation Networks Post Silicon Debugging Approach for USB2.0: Case Study of Enumeration Based on Fiber-Optic Sensor and the Light Intensity Changes Vehicle Dynamic Weighing System Comparison of AOMDV Routing Protocol under IEEE802.11 and TDMA Mac Layer Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1