{"title":"连续分段线性函数的帧多分辨率分析","authors":"Siva Prasad Murugan, G. P. Youvaraj","doi":"10.1142/s0219691321500326","DOIUrl":null,"url":null,"abstract":"The Franklin wavelet is constructed using the multiresolution analysis (MRA) generated from a scaling function [Formula: see text] that is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text] for every [Formula: see text]. For [Formula: see text] and [Formula: see text], it is shown that if a function [Formula: see text] is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text], for [Formula: see text], and generates MRA with dilation factor [Formula: see text], then [Formula: see text]. Conversely, for [Formula: see text], it is shown that there exists a [Formula: see text], as satisfying the above conditions, that generates MRA with dilation factor [Formula: see text]. The frame MRA (FMRA) is useful in signal processing, since the perfect reconstruction filter banks associated with FMRA can be narrow-band. So it is natural to ask, whether the above results can be extended for the case of FMRA. In this paper, for [Formula: see text], we prove that if [Formula: see text] generates FMRA with dilation factor [Formula: see text], then [Formula: see text]. For [Formula: see text], we prove similar results when [Formula: see text]. In addition, for [Formula: see text] we prove that there exists a function [Formula: see text] as satisfying the above conditions, that generates FMRA. Also, we construct tight wavelet frame and wavelet frame for such scaling functions.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frame multiresolution analysis of continuous piecewise linear functions\",\"authors\":\"Siva Prasad Murugan, G. P. Youvaraj\",\"doi\":\"10.1142/s0219691321500326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Franklin wavelet is constructed using the multiresolution analysis (MRA) generated from a scaling function [Formula: see text] that is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text] for every [Formula: see text]. For [Formula: see text] and [Formula: see text], it is shown that if a function [Formula: see text] is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text], for [Formula: see text], and generates MRA with dilation factor [Formula: see text], then [Formula: see text]. Conversely, for [Formula: see text], it is shown that there exists a [Formula: see text], as satisfying the above conditions, that generates MRA with dilation factor [Formula: see text]. The frame MRA (FMRA) is useful in signal processing, since the perfect reconstruction filter banks associated with FMRA can be narrow-band. So it is natural to ask, whether the above results can be extended for the case of FMRA. In this paper, for [Formula: see text], we prove that if [Formula: see text] generates FMRA with dilation factor [Formula: see text], then [Formula: see text]. For [Formula: see text], we prove similar results when [Formula: see text]. In addition, for [Formula: see text] we prove that there exists a function [Formula: see text] as satisfying the above conditions, that generates FMRA. Also, we construct tight wavelet frame and wavelet frame for such scaling functions.\",\"PeriodicalId\":158567,\"journal\":{\"name\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219691321500326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691321500326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frame multiresolution analysis of continuous piecewise linear functions
The Franklin wavelet is constructed using the multiresolution analysis (MRA) generated from a scaling function [Formula: see text] that is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text] for every [Formula: see text]. For [Formula: see text] and [Formula: see text], it is shown that if a function [Formula: see text] is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text], for [Formula: see text], and generates MRA with dilation factor [Formula: see text], then [Formula: see text]. Conversely, for [Formula: see text], it is shown that there exists a [Formula: see text], as satisfying the above conditions, that generates MRA with dilation factor [Formula: see text]. The frame MRA (FMRA) is useful in signal processing, since the perfect reconstruction filter banks associated with FMRA can be narrow-band. So it is natural to ask, whether the above results can be extended for the case of FMRA. In this paper, for [Formula: see text], we prove that if [Formula: see text] generates FMRA with dilation factor [Formula: see text], then [Formula: see text]. For [Formula: see text], we prove similar results when [Formula: see text]. In addition, for [Formula: see text] we prove that there exists a function [Formula: see text] as satisfying the above conditions, that generates FMRA. Also, we construct tight wavelet frame and wavelet frame for such scaling functions.