连续分段线性函数的帧多分辨率分析

Siva Prasad Murugan, G. P. Youvaraj
{"title":"连续分段线性函数的帧多分辨率分析","authors":"Siva Prasad Murugan, G. P. Youvaraj","doi":"10.1142/s0219691321500326","DOIUrl":null,"url":null,"abstract":"The Franklin wavelet is constructed using the multiresolution analysis (MRA) generated from a scaling function [Formula: see text] that is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text] for every [Formula: see text]. For [Formula: see text] and [Formula: see text], it is shown that if a function [Formula: see text] is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text], for [Formula: see text], and generates MRA with dilation factor [Formula: see text], then [Formula: see text]. Conversely, for [Formula: see text], it is shown that there exists a [Formula: see text], as satisfying the above conditions, that generates MRA with dilation factor [Formula: see text]. The frame MRA (FMRA) is useful in signal processing, since the perfect reconstruction filter banks associated with FMRA can be narrow-band. So it is natural to ask, whether the above results can be extended for the case of FMRA. In this paper, for [Formula: see text], we prove that if [Formula: see text] generates FMRA with dilation factor [Formula: see text], then [Formula: see text]. For [Formula: see text], we prove similar results when [Formula: see text]. In addition, for [Formula: see text] we prove that there exists a function [Formula: see text] as satisfying the above conditions, that generates FMRA. Also, we construct tight wavelet frame and wavelet frame for such scaling functions.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frame multiresolution analysis of continuous piecewise linear functions\",\"authors\":\"Siva Prasad Murugan, G. P. Youvaraj\",\"doi\":\"10.1142/s0219691321500326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Franklin wavelet is constructed using the multiresolution analysis (MRA) generated from a scaling function [Formula: see text] that is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text] for every [Formula: see text]. For [Formula: see text] and [Formula: see text], it is shown that if a function [Formula: see text] is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text], for [Formula: see text], and generates MRA with dilation factor [Formula: see text], then [Formula: see text]. Conversely, for [Formula: see text], it is shown that there exists a [Formula: see text], as satisfying the above conditions, that generates MRA with dilation factor [Formula: see text]. The frame MRA (FMRA) is useful in signal processing, since the perfect reconstruction filter banks associated with FMRA can be narrow-band. So it is natural to ask, whether the above results can be extended for the case of FMRA. In this paper, for [Formula: see text], we prove that if [Formula: see text] generates FMRA with dilation factor [Formula: see text], then [Formula: see text]. For [Formula: see text], we prove similar results when [Formula: see text]. In addition, for [Formula: see text] we prove that there exists a function [Formula: see text] as satisfying the above conditions, that generates FMRA. Also, we construct tight wavelet frame and wavelet frame for such scaling functions.\",\"PeriodicalId\":158567,\"journal\":{\"name\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219691321500326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691321500326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Franklin小波是使用由缩放函数[公式:见文]生成的多分辨率分析(MRA)构建的,该缩放函数在[公式:见文]上是连续的,在[公式:见文]上是线性的,在[公式:见文]上是[公式:见文]。对于[公式:见文]和[公式:见文],表明如果一个函数[公式:见文]在[公式:见文]上是连续的,在[公式:见文]和[公式:见文]上是线性的,对于[公式:见文],产生具有膨胀因子[公式:见文]的MRA,则[公式:见文]。反之,对于[公式:见文],表明存在一个[公式:见文],满足上述条件,产生具有扩张因子的MRA[公式:见文]。帧MRA (FMRA)在信号处理中很有用,因为与FMRA相关的完美重构滤波器组可以是窄带的。因此,人们自然会问,上述结果是否可以推广到FMRA的情况下。在本文中,对于[公式:见文],我们证明了如果[公式:见文]产生具有膨胀因子[公式:见文]的FMRA,则[公式:见文]。对于[公式:见文],我们证明了[公式:见文]时的类似结果。此外,对于[公式:见文],我们证明存在一个函数[公式:见文]满足上述条件,生成FMRA。并构造了紧小波框架和小波框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frame multiresolution analysis of continuous piecewise linear functions
The Franklin wavelet is constructed using the multiresolution analysis (MRA) generated from a scaling function [Formula: see text] that is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text] for every [Formula: see text]. For [Formula: see text] and [Formula: see text], it is shown that if a function [Formula: see text] is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text], for [Formula: see text], and generates MRA with dilation factor [Formula: see text], then [Formula: see text]. Conversely, for [Formula: see text], it is shown that there exists a [Formula: see text], as satisfying the above conditions, that generates MRA with dilation factor [Formula: see text]. The frame MRA (FMRA) is useful in signal processing, since the perfect reconstruction filter banks associated with FMRA can be narrow-band. So it is natural to ask, whether the above results can be extended for the case of FMRA. In this paper, for [Formula: see text], we prove that if [Formula: see text] generates FMRA with dilation factor [Formula: see text], then [Formula: see text]. For [Formula: see text], we prove similar results when [Formula: see text]. In addition, for [Formula: see text] we prove that there exists a function [Formula: see text] as satisfying the above conditions, that generates FMRA. Also, we construct tight wavelet frame and wavelet frame for such scaling functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An aggressive reduction on the complexity of optimization for non-strongly convex objectives A single image super resolution method based on cross residual network and wavelet transform On the computation of extremal trees of Harmonic index with given edge-vertex domination number Phase retrieval from short-time fractional Fourier measurements using alternating direction method of multipliers k-Ambiguity function in the framework of offset linear canonical transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1