体内生物活性玻璃中锶离子的生物利用度:骨界面微量元素的微像素研究

J. Lao, J. Lacroix, J. Nohra, N. Naaman, J. Sautier, douard Jallot
{"title":"体内生物活性玻璃中锶离子的生物利用度:骨界面微量元素的微像素研究","authors":"J. Lao, J. Lacroix, J. Nohra, N. Naaman, J. Sautier, douard Jallot","doi":"10.4172/2090-5025.S1-004","DOIUrl":null,"url":null,"abstract":"Studying the local release of strontium traces in vivo is of key interest, but calls for highly sensitive techniques besides providing an excellent (micronic) spatial resolution. In this context nuclear microprobes such as the PIXE (Particle-Induced X-ray Emission) technique, appear as powerful tools of investigation. Here, the in vivo behaviour of a Sr-delivering bioactive glass has been investigated through micro-PIXE analyses in connection with histological studies. New bone formation is observed after 6 weeks of implantation in rabbit femoral condyle. Interestingly, Sr traces are detected over a large area at the site of implantation, demonstrating the efficient release of Sr osteo inductive ions from the glass and their diffusion over several ten microns through the tissues. From its inorganic composition and content in traces of interest such as Zn, neo formed bone seems of higher quality for Sr-delivering particles compared to Sr-free particles, evidencing the positive effect of Sr in vivo.","PeriodicalId":127691,"journal":{"name":"Bioceramics Development and Applications","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bioavailability of Strontium Ions from Bioactive Glasses In Vivo: A Micro-PIXE Study of Trace Elements at the Bone Interface\",\"authors\":\"J. Lao, J. Lacroix, J. Nohra, N. Naaman, J. Sautier, douard Jallot\",\"doi\":\"10.4172/2090-5025.S1-004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studying the local release of strontium traces in vivo is of key interest, but calls for highly sensitive techniques besides providing an excellent (micronic) spatial resolution. In this context nuclear microprobes such as the PIXE (Particle-Induced X-ray Emission) technique, appear as powerful tools of investigation. Here, the in vivo behaviour of a Sr-delivering bioactive glass has been investigated through micro-PIXE analyses in connection with histological studies. New bone formation is observed after 6 weeks of implantation in rabbit femoral condyle. Interestingly, Sr traces are detected over a large area at the site of implantation, demonstrating the efficient release of Sr osteo inductive ions from the glass and their diffusion over several ten microns through the tissues. From its inorganic composition and content in traces of interest such as Zn, neo formed bone seems of higher quality for Sr-delivering particles compared to Sr-free particles, evidencing the positive effect of Sr in vivo.\",\"PeriodicalId\":127691,\"journal\":{\"name\":\"Bioceramics Development and Applications\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioceramics Development and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2090-5025.S1-004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioceramics Development and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2090-5025.S1-004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究体内锶痕量的局部释放是关键的兴趣,但除了提供优异的(微米)空间分辨率外,还需要高度敏感的技术。在这种情况下,核微探针,如pxie(粒子诱导x射线发射)技术,成为研究的有力工具。在这里,通过与组织学研究相关的微pixe分析,研究了递送sr生物活性玻璃的体内行为。植入兔股骨髁6周后观察到新骨形成。有趣的是,在植入部位的大面积区域检测到Sr痕迹,表明Sr骨诱导离子从玻璃中有效释放,并通过组织扩散数十微米。从其无机成分和微量元素(如锌)的含量来看,新形成的骨骼似乎比不含锶的颗粒具有更高的质量,这证明了锶在体内的积极作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioavailability of Strontium Ions from Bioactive Glasses In Vivo: A Micro-PIXE Study of Trace Elements at the Bone Interface
Studying the local release of strontium traces in vivo is of key interest, but calls for highly sensitive techniques besides providing an excellent (micronic) spatial resolution. In this context nuclear microprobes such as the PIXE (Particle-Induced X-ray Emission) technique, appear as powerful tools of investigation. Here, the in vivo behaviour of a Sr-delivering bioactive glass has been investigated through micro-PIXE analyses in connection with histological studies. New bone formation is observed after 6 weeks of implantation in rabbit femoral condyle. Interestingly, Sr traces are detected over a large area at the site of implantation, demonstrating the efficient release of Sr osteo inductive ions from the glass and their diffusion over several ten microns through the tissues. From its inorganic composition and content in traces of interest such as Zn, neo formed bone seems of higher quality for Sr-delivering particles compared to Sr-free particles, evidencing the positive effect of Sr in vivo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modal Analysis of FGM Plates (Sus304/Al2O3) Using FEM Intentional Replantation with 180° Rotation of a Crown-Root Fracture as a Last Expedient: A Case Report Mechanism of Bonding in Seashell Powder Based Ceramic Composites Used for Binder-Jet 3D Printing Effect of βTricalcium Phosphate Nanoparticles Additions on the Properties of Gelatin-Chitosan Scaffolds Hydroxyapatite Scaffolds for Bone Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1