美国海军的混合动力驱动系统

Gianfranco P. Buonamici
{"title":"美国海军的混合动力驱动系统","authors":"Gianfranco P. Buonamici","doi":"10.1115/gt2021-03523","DOIUrl":null,"url":null,"abstract":"\n With an increasing instability and cost fluctuation in the world energy markets, it has become more important to increase the US Navy fleet’s overall fuel efficiency. The Navy’s Energy Program for Security and Independence sets forth goals to reduce its overall consumption of energy and decrease its reliance on petroleum. One way that helps accomplish these goals is through the use of hybrid electric drive systems to replace gas turbine engines to accomplish lower ship speeds. Although gas turbines are power dense and fairly efficient at full load, their fuel efficiency decreases drastically at the lower power levels used when slower speeds are required to accomplish the ship’s mission. It is in this lower speed range where operating gas turbine generators closer to their optimum efficiency levels and powering an electric motor saves a significant amount of fuel.\n This paper will discuss two in-service systems developed for various US Navy ships: the Hybrid Electric Drive (HED) system for DDG 103 and the Auxiliary Propulsion System (APS) for LHD 8 and LHA 7. It will describe each of the two configurations and their histories, how they are implemented and increase the capability of the ship, and the resulting fuel efficiencies that have been realized with their use.","PeriodicalId":166333,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Electric Drive Systems in the United States Navy\",\"authors\":\"Gianfranco P. Buonamici\",\"doi\":\"10.1115/gt2021-03523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With an increasing instability and cost fluctuation in the world energy markets, it has become more important to increase the US Navy fleet’s overall fuel efficiency. The Navy’s Energy Program for Security and Independence sets forth goals to reduce its overall consumption of energy and decrease its reliance on petroleum. One way that helps accomplish these goals is through the use of hybrid electric drive systems to replace gas turbine engines to accomplish lower ship speeds. Although gas turbines are power dense and fairly efficient at full load, their fuel efficiency decreases drastically at the lower power levels used when slower speeds are required to accomplish the ship’s mission. It is in this lower speed range where operating gas turbine generators closer to their optimum efficiency levels and powering an electric motor saves a significant amount of fuel.\\n This paper will discuss two in-service systems developed for various US Navy ships: the Hybrid Electric Drive (HED) system for DDG 103 and the Auxiliary Propulsion System (APS) for LHD 8 and LHA 7. It will describe each of the two configurations and their histories, how they are implemented and increase the capability of the ship, and the resulting fuel efficiencies that have been realized with their use.\",\"PeriodicalId\":166333,\"journal\":{\"name\":\"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-03523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Aircraft Engine; Fans and Blowers; Marine; Wind Energy; Scholar Lecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-03523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着世界能源市场的不稳定性和成本波动的增加,提高美国海军舰队的整体燃油效率变得更加重要。美国海军的安全与独立能源计划提出了减少总体能源消耗和减少对石油依赖的目标。实现这些目标的一种方法是使用混合电力驱动系统来取代燃气涡轮发动机,以实现更低的船舶速度。尽管燃气轮机在满载时功率密集,效率相当高,但当需要较慢的速度来完成船舶的任务时,它们的燃油效率在较低的功率水平上急剧下降。正是在这种较低的速度范围内,操作燃气轮机发电机更接近其最佳效率水平,并为电动机提供动力,节省了大量的燃料。本文将讨论为各种美国海军舰艇开发的两种现役系统:DDG 103的混合动力驱动(HED)系统和LHD 8和LHA 7的辅助推进系统(APS)。它将描述这两种配置及其历史,它们是如何实现的,如何提高船舶的能力,以及使用它们所实现的燃油效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Electric Drive Systems in the United States Navy
With an increasing instability and cost fluctuation in the world energy markets, it has become more important to increase the US Navy fleet’s overall fuel efficiency. The Navy’s Energy Program for Security and Independence sets forth goals to reduce its overall consumption of energy and decrease its reliance on petroleum. One way that helps accomplish these goals is through the use of hybrid electric drive systems to replace gas turbine engines to accomplish lower ship speeds. Although gas turbines are power dense and fairly efficient at full load, their fuel efficiency decreases drastically at the lower power levels used when slower speeds are required to accomplish the ship’s mission. It is in this lower speed range where operating gas turbine generators closer to their optimum efficiency levels and powering an electric motor saves a significant amount of fuel. This paper will discuss two in-service systems developed for various US Navy ships: the Hybrid Electric Drive (HED) system for DDG 103 and the Auxiliary Propulsion System (APS) for LHD 8 and LHA 7. It will describe each of the two configurations and their histories, how they are implemented and increase the capability of the ship, and the resulting fuel efficiencies that have been realized with their use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of a Passive Flow Control Device in an S-Duct Inlet at High Subsonic Flow Estimation of Design Parameters and Performance for a State-of-the-Art Turbofan Influence of Yawed Wind Flow on the Blade Forces/Bending Moments and Blade Elastic Torsion for an Axial-Flow Wind Turbine Hybrid Electric Drive Systems in the United States Navy A Mathematical Model for Windmilling of a Turbojet Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1