{"title":"带中冷器和再热器的再生式超临界二氧化碳动力循环的性能分析与优化","authors":"A. Karakurt","doi":"10.14744/seatific.2021.0001","DOIUrl":null,"url":null,"abstract":"Supercritical CO2 (sCO2) power cycles play an important role in energy production as they are more efficient and more compact than conventional energy production systems. Therefore, they are widely used in different systems such as nuclear systems, renewable energy systems, heat recovery systems, fossil power plants, submarines, and some commercial and navy ships that produce a wide range of power operating in different temperature ranges. It has become very popular especially in recent years due to its widespread use and technical capabilities. This study analyses the effects of some design parameters (pressure ratio and temperature ratio) on the performance criteria (net work, thermal efficiency, back work ratio, and total entropy generation) and draws some optimum working conditions by means of the purpose of using. Results show that to obtain an optimum system according to maximum thermal efficiency or maximum net work the design range for the compression ratio for temperature ratio (α) 2, is between 5.224 and 6.449, for α=2.75, 8.408 and 12.57, and for α=3.5, the design range is between 11.35 and 16.","PeriodicalId":170561,"journal":{"name":"Seatific Engineering Research Journal","volume":"26 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analyses and optimization of a regenerative supercritical carbon dioxide power cycle with intercooler and reheater\",\"authors\":\"A. Karakurt\",\"doi\":\"10.14744/seatific.2021.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supercritical CO2 (sCO2) power cycles play an important role in energy production as they are more efficient and more compact than conventional energy production systems. Therefore, they are widely used in different systems such as nuclear systems, renewable energy systems, heat recovery systems, fossil power plants, submarines, and some commercial and navy ships that produce a wide range of power operating in different temperature ranges. It has become very popular especially in recent years due to its widespread use and technical capabilities. This study analyses the effects of some design parameters (pressure ratio and temperature ratio) on the performance criteria (net work, thermal efficiency, back work ratio, and total entropy generation) and draws some optimum working conditions by means of the purpose of using. Results show that to obtain an optimum system according to maximum thermal efficiency or maximum net work the design range for the compression ratio for temperature ratio (α) 2, is between 5.224 and 6.449, for α=2.75, 8.408 and 12.57, and for α=3.5, the design range is between 11.35 and 16.\",\"PeriodicalId\":170561,\"journal\":{\"name\":\"Seatific Engineering Research Journal\",\"volume\":\"26 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seatific Engineering Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14744/seatific.2021.0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seatific Engineering Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14744/seatific.2021.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance analyses and optimization of a regenerative supercritical carbon dioxide power cycle with intercooler and reheater
Supercritical CO2 (sCO2) power cycles play an important role in energy production as they are more efficient and more compact than conventional energy production systems. Therefore, they are widely used in different systems such as nuclear systems, renewable energy systems, heat recovery systems, fossil power plants, submarines, and some commercial and navy ships that produce a wide range of power operating in different temperature ranges. It has become very popular especially in recent years due to its widespread use and technical capabilities. This study analyses the effects of some design parameters (pressure ratio and temperature ratio) on the performance criteria (net work, thermal efficiency, back work ratio, and total entropy generation) and draws some optimum working conditions by means of the purpose of using. Results show that to obtain an optimum system according to maximum thermal efficiency or maximum net work the design range for the compression ratio for temperature ratio (α) 2, is between 5.224 and 6.449, for α=2.75, 8.408 and 12.57, and for α=3.5, the design range is between 11.35 and 16.