BLINK:位稀疏LSTM推理内核,为神经反馈设备提供高效的钙痕量提取

Zhe Chen, Garrett J. Blair, H. T. Blair, J. Cong
{"title":"BLINK:位稀疏LSTM推理内核,为神经反馈设备提供高效的钙痕量提取","authors":"Zhe Chen, Garrett J. Blair, H. T. Blair, J. Cong","doi":"10.1145/3370748.3406552","DOIUrl":null,"url":null,"abstract":"Miniaturized fluorescent calcium imaging microscopes are widely used for monitoring the activity of a large population of neurons in freely behaving animals in vivo. Conventional calcium image analyses extract calcium traces by iterative and bulk image processing and they are hard to meet the power and latency requirements for neurofeedback devices. In this paper, we propose the calcium image processing pipeline based on a bit-sparse long short-term memory (LSTM) inference kernel (BLINK) for efficient calcium trace extraction. It largely reduces the power and latency while remaining the trace extraction accuracy. We implemented the customized pipeline on the Ultra96 platform. It can extract calcium traces from up to 1024 cells with sub-ms latency on a single FPGA device. We designed the BLINK circuits in a 28-nm technology. Evaluation shows that the proposed bit-sparse representation can reduce the circuit area by 38.7% and save the power consumption by 38.4% without accuracy loss. The BLINK circuits achieve 410 pJ/inference, which has 6293x and 52.4x gains in energy efficiency compared to the evaluation on the high performance CPU and GPU, respectively.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"BLINK: bit-sparse LSTM inference kernel enabling efficient calcium trace extraction for neurofeedback devices\",\"authors\":\"Zhe Chen, Garrett J. Blair, H. T. Blair, J. Cong\",\"doi\":\"10.1145/3370748.3406552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Miniaturized fluorescent calcium imaging microscopes are widely used for monitoring the activity of a large population of neurons in freely behaving animals in vivo. Conventional calcium image analyses extract calcium traces by iterative and bulk image processing and they are hard to meet the power and latency requirements for neurofeedback devices. In this paper, we propose the calcium image processing pipeline based on a bit-sparse long short-term memory (LSTM) inference kernel (BLINK) for efficient calcium trace extraction. It largely reduces the power and latency while remaining the trace extraction accuracy. We implemented the customized pipeline on the Ultra96 platform. It can extract calcium traces from up to 1024 cells with sub-ms latency on a single FPGA device. We designed the BLINK circuits in a 28-nm technology. Evaluation shows that the proposed bit-sparse representation can reduce the circuit area by 38.7% and save the power consumption by 38.4% without accuracy loss. The BLINK circuits achieve 410 pJ/inference, which has 6293x and 52.4x gains in energy efficiency compared to the evaluation on the high performance CPU and GPU, respectively.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3370748.3406552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

小型荧光钙成像显微镜被广泛用于监测自由行为动物体内大量神经元的活动。传统的钙图像分析通过迭代和批量图像处理提取钙痕迹,难以满足神经反馈设备对功率和延迟的要求。本文提出了一种基于位稀疏长短期记忆(LSTM)推理核(BLINK)的钙图像处理流水线,用于高效提取钙微量元素。它大大降低了功耗和延迟,同时保持了痕量提取的准确性。我们在Ultra96平台上实现了定制流水线。它可以在单个FPGA器件上以亚毫秒的延迟从多达1024个单元中提取钙痕迹。我们设计了28纳米技术的BLINK电路。评估结果表明,在不损失精度的情况下,提出的位稀疏表示可以减少38.7%的电路面积,节省38.4%的功耗。BLINK电路达到410 pJ/推理,与高性能CPU和GPU的能效评估相比,分别提高了6293x和52.4x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BLINK: bit-sparse LSTM inference kernel enabling efficient calcium trace extraction for neurofeedback devices
Miniaturized fluorescent calcium imaging microscopes are widely used for monitoring the activity of a large population of neurons in freely behaving animals in vivo. Conventional calcium image analyses extract calcium traces by iterative and bulk image processing and they are hard to meet the power and latency requirements for neurofeedback devices. In this paper, we propose the calcium image processing pipeline based on a bit-sparse long short-term memory (LSTM) inference kernel (BLINK) for efficient calcium trace extraction. It largely reduces the power and latency while remaining the trace extraction accuracy. We implemented the customized pipeline on the Ultra96 platform. It can extract calcium traces from up to 1024 cells with sub-ms latency on a single FPGA device. We designed the BLINK circuits in a 28-nm technology. Evaluation shows that the proposed bit-sparse representation can reduce the circuit area by 38.7% and save the power consumption by 38.4% without accuracy loss. The BLINK circuits achieve 410 pJ/inference, which has 6293x and 52.4x gains in energy efficiency compared to the evaluation on the high performance CPU and GPU, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1