{"title":"可视化自动检测到的周期性网络活动","authors":"R. Gove, Lauren Deason","doi":"10.1109/VIZSEC.2018.8709177","DOIUrl":null,"url":null,"abstract":"Malware frequently leaves periodic signals in network logs, but these signals are easily drowned out by non-malicious periodic network activity, such as software updates and other polling activity. This paper describes a novel algorithm based on Discrete Fourier Transforms capable of detecting multiple distinct period lengths in a given time series. We pair the output of this algorithm with aggregation summary tables that give users information scent about which detections are worth investigating based on the metadata of the log events rather than the periodic signal. A visualization of selected detections enables users to see all detected period lengths per entity, and compare detections between entities to check for coordinated activity. We evaluate our approach on real-world netflow and DNS data from a large organization, demonstrating how to successfully find malicious periodic activity in a large pool of noise and non-malicious periodic activity.","PeriodicalId":412565,"journal":{"name":"2018 IEEE Symposium on Visualization for Cyber Security (VizSec)","volume":"18 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Visualizing Automatically Detected Periodic Network Activity\",\"authors\":\"R. Gove, Lauren Deason\",\"doi\":\"10.1109/VIZSEC.2018.8709177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware frequently leaves periodic signals in network logs, but these signals are easily drowned out by non-malicious periodic network activity, such as software updates and other polling activity. This paper describes a novel algorithm based on Discrete Fourier Transforms capable of detecting multiple distinct period lengths in a given time series. We pair the output of this algorithm with aggregation summary tables that give users information scent about which detections are worth investigating based on the metadata of the log events rather than the periodic signal. A visualization of selected detections enables users to see all detected period lengths per entity, and compare detections between entities to check for coordinated activity. We evaluate our approach on real-world netflow and DNS data from a large organization, demonstrating how to successfully find malicious periodic activity in a large pool of noise and non-malicious periodic activity.\",\"PeriodicalId\":412565,\"journal\":{\"name\":\"2018 IEEE Symposium on Visualization for Cyber Security (VizSec)\",\"volume\":\"18 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on Visualization for Cyber Security (VizSec)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIZSEC.2018.8709177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Visualization for Cyber Security (VizSec)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIZSEC.2018.8709177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Malware frequently leaves periodic signals in network logs, but these signals are easily drowned out by non-malicious periodic network activity, such as software updates and other polling activity. This paper describes a novel algorithm based on Discrete Fourier Transforms capable of detecting multiple distinct period lengths in a given time series. We pair the output of this algorithm with aggregation summary tables that give users information scent about which detections are worth investigating based on the metadata of the log events rather than the periodic signal. A visualization of selected detections enables users to see all detected period lengths per entity, and compare detections between entities to check for coordinated activity. We evaluate our approach on real-world netflow and DNS data from a large organization, demonstrating how to successfully find malicious periodic activity in a large pool of noise and non-malicious periodic activity.