新闻中复杂事件提取和聚类的无监督技术

EVENTS@ACL Pub Date : 2014-06-01 DOI:10.3115/v1/W14-2905
Delia Rusu, James Hodson, Anthony Kimball
{"title":"新闻中复杂事件提取和聚类的无监督技术","authors":"Delia Rusu, James Hodson, Anthony Kimball","doi":"10.3115/v1/W14-2905","DOIUrl":null,"url":null,"abstract":"Structured machine-readable representations of news articles can radically change the way we interact with information. One step towards obtaining these representations is event extraction - the identification of event triggers and arguments in text. With previous approaches mainly focusing on classifying events into a small set of predefined types, we analyze unsupervised techniques for complex event extraction. In addition to extracting event mentions in news articles, we aim at obtaining a more general representation by disambiguating to concepts defined in knowledge bases. These concepts are further used as features in a clustering application. Two evaluation settings highlight the advantages and shortcomings of the proposed approach.","PeriodicalId":392223,"journal":{"name":"EVENTS@ACL","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Unsupervised Techniques for Extracting and Clustering Complex Events in News\",\"authors\":\"Delia Rusu, James Hodson, Anthony Kimball\",\"doi\":\"10.3115/v1/W14-2905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structured machine-readable representations of news articles can radically change the way we interact with information. One step towards obtaining these representations is event extraction - the identification of event triggers and arguments in text. With previous approaches mainly focusing on classifying events into a small set of predefined types, we analyze unsupervised techniques for complex event extraction. In addition to extracting event mentions in news articles, we aim at obtaining a more general representation by disambiguating to concepts defined in knowledge bases. These concepts are further used as features in a clustering application. Two evaluation settings highlight the advantages and shortcomings of the proposed approach.\",\"PeriodicalId\":392223,\"journal\":{\"name\":\"EVENTS@ACL\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVENTS@ACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/v1/W14-2905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVENTS@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W14-2905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

结构化的机器可读新闻文章表示可以从根本上改变我们与信息交互的方式。获得这些表示的一个步骤是事件提取——识别文本中的事件触发器和参数。由于以前的方法主要侧重于将事件分类为一小组预定义类型,我们分析了用于复杂事件提取的无监督技术。除了提取新闻文章中的事件提及外,我们的目标是通过消除知识库中定义的概念的歧义来获得更一般的表示。这些概念在集群应用程序中进一步用作特性。两种评估设置突出了所提出方法的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised Techniques for Extracting and Clustering Complex Events in News
Structured machine-readable representations of news articles can radically change the way we interact with information. One step towards obtaining these representations is event extraction - the identification of event triggers and arguments in text. With previous approaches mainly focusing on classifying events into a small set of predefined types, we analyze unsupervised techniques for complex event extraction. In addition to extracting event mentions in news articles, we aim at obtaining a more general representation by disambiguating to concepts defined in knowledge bases. These concepts are further used as features in a clustering application. Two evaluation settings highlight the advantages and shortcomings of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Augmenting FrameNet Via PPDB Evaluation for Partial Event Coreference Inter-annotator Agreement for ERE annotation Challenges of Adding Causation to Richer Event Descriptions Unsupervised Techniques for Extracting and Clustering Complex Events in News
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1