多智能体强化学习环境中基于注意的好奇心

Marton Szemenyei, Patrik Reizinger
{"title":"多智能体强化学习环境中基于注意的好奇心","authors":"Marton Szemenyei, Patrik Reizinger","doi":"10.1109/ICCAIRO47923.2019.00035","DOIUrl":null,"url":null,"abstract":"Several paradigms exist in Reinforcement Learning to improve the exploration capabilities of agents, among which the curiosity-driven approach is followed in this work. Extending previous work that utilizes attention to make curiosity state-and action-selective, we expand the range of experiments by introducing two multi-agent environments. The first one is for robot soccer, the second one features a driving scenario in urban settings. Moreover, as during training the different number of observations must be matched between multiple time-steps, we propose an attention-based approach, called Recurrent Temporal Attention (RTA) to do this. The corresponding implementation can be found at https://github.com/szemenyeim/DynEnv.","PeriodicalId":297342,"journal":{"name":"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Attention-Based Curiosity in Multi-Agent Reinforcement Learning Environments\",\"authors\":\"Marton Szemenyei, Patrik Reizinger\",\"doi\":\"10.1109/ICCAIRO47923.2019.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several paradigms exist in Reinforcement Learning to improve the exploration capabilities of agents, among which the curiosity-driven approach is followed in this work. Extending previous work that utilizes attention to make curiosity state-and action-selective, we expand the range of experiments by introducing two multi-agent environments. The first one is for robot soccer, the second one features a driving scenario in urban settings. Moreover, as during training the different number of observations must be matched between multiple time-steps, we propose an attention-based approach, called Recurrent Temporal Attention (RTA) to do this. The corresponding implementation can be found at https://github.com/szemenyeim/DynEnv.\",\"PeriodicalId\":297342,\"journal\":{\"name\":\"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIRO47923.2019.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIRO47923.2019.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在强化学习中存在几种范式来提高智能体的探索能力,其中在本工作中采用了好奇心驱动的方法。我们通过引入两个多智能体环境,扩展了先前利用注意力使好奇心状态和动作选择性的工作。第一个是机器人足球,第二个是城市环境中的驾驶场景。此外,由于在训练过程中必须在多个时间步之间匹配不同数量的观察值,我们提出了一种基于注意的方法,称为周期性时间注意(RTA)来实现这一目标。相应的实现可以在https://github.com/szemenyeim/DynEnv上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attention-Based Curiosity in Multi-Agent Reinforcement Learning Environments
Several paradigms exist in Reinforcement Learning to improve the exploration capabilities of agents, among which the curiosity-driven approach is followed in this work. Extending previous work that utilizes attention to make curiosity state-and action-selective, we expand the range of experiments by introducing two multi-agent environments. The first one is for robot soccer, the second one features a driving scenario in urban settings. Moreover, as during training the different number of observations must be matched between multiple time-steps, we propose an attention-based approach, called Recurrent Temporal Attention (RTA) to do this. The corresponding implementation can be found at https://github.com/szemenyeim/DynEnv.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Mixture Ratio Model Developing a System Dynamics Model for Creating a Learning Sustainable Mobility Culture [Title page i] Surface Roughness Optimization of Poly-Jet 3D Printing Using Grey Taguchi Method [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1