智能电网环境下数据中心利润优化的进化方法

S. Khalid, Ishfaq Ahmad, E. KhodyarMohammad
{"title":"智能电网环境下数据中心利润优化的进化方法","authors":"S. Khalid, Ishfaq Ahmad, E. KhodyarMohammad","doi":"10.1109/ICDIS.2019.00021","DOIUrl":null,"url":null,"abstract":"Overwhelming energy-related costs mar data center profits. In a smart grid, the price of electricity may change with real-time demand, geographic area, and time-of-use. Data centers with flexible request dispatch and resource allocation capabilities can cooperatively avail these price variations to reduce expenditures and maximize profit. In this paper, we model the data center profit maximization as a constrained multi-objective optimization problem. Our proposed scheme optimizes data center revenue and expense objectives simultaneously and to the best of our knowledge, is the first scheme that provides trade-off solutions for use in varied operational scenarios. The approach utilizes the Strength Pareto Evolutionary Algorithm (SPEA-II) as the base framework and adapts it to devise an algorithm. Our technique finds Pareto optimal solutions for data center profit maximization problem in a smart grid environment. The simulation results prove the efficacy of the proposed technique.","PeriodicalId":181673,"journal":{"name":"2019 2nd International Conference on Data Intelligence and Security (ICDIS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An Evolutionary Approach to Optimize Data Center Profit in Smart Grid Environment\",\"authors\":\"S. Khalid, Ishfaq Ahmad, E. KhodyarMohammad\",\"doi\":\"10.1109/ICDIS.2019.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overwhelming energy-related costs mar data center profits. In a smart grid, the price of electricity may change with real-time demand, geographic area, and time-of-use. Data centers with flexible request dispatch and resource allocation capabilities can cooperatively avail these price variations to reduce expenditures and maximize profit. In this paper, we model the data center profit maximization as a constrained multi-objective optimization problem. Our proposed scheme optimizes data center revenue and expense objectives simultaneously and to the best of our knowledge, is the first scheme that provides trade-off solutions for use in varied operational scenarios. The approach utilizes the Strength Pareto Evolutionary Algorithm (SPEA-II) as the base framework and adapts it to devise an algorithm. Our technique finds Pareto optimal solutions for data center profit maximization problem in a smart grid environment. The simulation results prove the efficacy of the proposed technique.\",\"PeriodicalId\":181673,\"journal\":{\"name\":\"2019 2nd International Conference on Data Intelligence and Security (ICDIS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Data Intelligence and Security (ICDIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIS.2019.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Data Intelligence and Security (ICDIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIS.2019.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

巨大的能源相关成本影响了数据中心的利润。在智能电网中,电力价格可能会随着实时需求、地理区域和使用时间而变化。具有灵活请求调度和资源分配能力的数据中心可以协同利用这些价格变化来减少支出并实现利润最大化。本文将数据中心利润最大化问题建模为一个有约束的多目标优化问题。我们提出的方案同时优化了数据中心的收入和费用目标,并且据我们所知,它是第一个为各种操作场景提供权衡解决方案的方案。该方法采用强度帕累托进化算法(SPEA-II)作为基本框架,并将其应用于算法设计。该技术为智能电网环境下数据中心利润最大化问题找到了帕累托最优解。仿真结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Evolutionary Approach to Optimize Data Center Profit in Smart Grid Environment
Overwhelming energy-related costs mar data center profits. In a smart grid, the price of electricity may change with real-time demand, geographic area, and time-of-use. Data centers with flexible request dispatch and resource allocation capabilities can cooperatively avail these price variations to reduce expenditures and maximize profit. In this paper, we model the data center profit maximization as a constrained multi-objective optimization problem. Our proposed scheme optimizes data center revenue and expense objectives simultaneously and to the best of our knowledge, is the first scheme that provides trade-off solutions for use in varied operational scenarios. The approach utilizes the Strength Pareto Evolutionary Algorithm (SPEA-II) as the base framework and adapts it to devise an algorithm. Our technique finds Pareto optimal solutions for data center profit maximization problem in a smart grid environment. The simulation results prove the efficacy of the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Platform-Agnostic Language to Map Control Primitives to SCADA Communication Protocols Selection of Optimal Closure Relationships for Multiphase Flow using a Genetic Algorithm Data Dependencies Preserving Shuffle in Relational Database Improved Mix Column Computation of Cryptographic AES Physiological Measurement for Emotion Recognition in Virtual Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1