边缘阻塞性睡眠呼吸暂停严重程度评估和进展监测的极简方法

Md Juber Rahman, B. Morshed
{"title":"边缘阻塞性睡眠呼吸暂停严重程度评估和进展监测的极简方法","authors":"Md Juber Rahman, B. Morshed","doi":"10.1145/3479432","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence-enabled applications on edge devices have the potential to revolutionize disease detection and monitoring in future smart health (sHealth) systems. In this study, we investigated a minimalist approach for the severity classification, severity estimation, and progression monitoring of obstructive sleep apnea (OSA) in a home environment using wearables. We used the recursive feature elimination technique to select the best feature set of 70 features from a total of 200 features extracted from polysomnogram. We used a multi-layer perceptron model to investigate the performance of OSA severity classification with all the ranked features to a subset of features available from either Electroencephalography or Heart Rate Variability (HRV) and time duration of SpO2 level. The results indicate that using only computationally inexpensive features from HRV and SpO2, an area under the curve of 0.91 and an accuracy of 83.97% can be achieved for the severity classification of OSA. For estimation of the apnea-hypopnea index, the accuracy of RMSE = 4.6 and R-squared value = 0.71 have been achieved in the test set using only ranked HRV and SpO2 features. The Wilcoxon-signed-rank test indicates a significant change (p < 0.05) in the selected feature values for a progression in the disease over 2.5 years. The method has the potential for integration with edge computing for deployment on everyday wearables. This may facilitate the preliminary severity estimation, monitoring, and management of OSA patients and reduce associated healthcare costs as well as the prevalence of untreated OSA.","PeriodicalId":288903,"journal":{"name":"ACM Transactions on Computing for Healthcare (HEALTH)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Minimalist Method Toward Severity Assessment and Progression Monitoring of Obstructive Sleep Apnea on the Edge\",\"authors\":\"Md Juber Rahman, B. Morshed\",\"doi\":\"10.1145/3479432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence-enabled applications on edge devices have the potential to revolutionize disease detection and monitoring in future smart health (sHealth) systems. In this study, we investigated a minimalist approach for the severity classification, severity estimation, and progression monitoring of obstructive sleep apnea (OSA) in a home environment using wearables. We used the recursive feature elimination technique to select the best feature set of 70 features from a total of 200 features extracted from polysomnogram. We used a multi-layer perceptron model to investigate the performance of OSA severity classification with all the ranked features to a subset of features available from either Electroencephalography or Heart Rate Variability (HRV) and time duration of SpO2 level. The results indicate that using only computationally inexpensive features from HRV and SpO2, an area under the curve of 0.91 and an accuracy of 83.97% can be achieved for the severity classification of OSA. For estimation of the apnea-hypopnea index, the accuracy of RMSE = 4.6 and R-squared value = 0.71 have been achieved in the test set using only ranked HRV and SpO2 features. The Wilcoxon-signed-rank test indicates a significant change (p < 0.05) in the selected feature values for a progression in the disease over 2.5 years. The method has the potential for integration with edge computing for deployment on everyday wearables. This may facilitate the preliminary severity estimation, monitoring, and management of OSA patients and reduce associated healthcare costs as well as the prevalence of untreated OSA.\",\"PeriodicalId\":288903,\"journal\":{\"name\":\"ACM Transactions on Computing for Healthcare (HEALTH)\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computing for Healthcare (HEALTH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3479432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computing for Healthcare (HEALTH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3479432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

边缘设备上支持人工智能的应用程序有可能在未来的智能健康系统中彻底改变疾病检测和监测。在这项研究中,我们研究了一种使用可穿戴设备在家庭环境中进行阻塞性睡眠呼吸暂停(OSA)严重程度分类、严重程度估计和进展监测的极简方法。采用递归特征消去技术,从多导睡眠图提取的200个特征中选出70个最优特征集。我们使用多层感知器模型来研究OSA严重程度分类的性能,将所有排序的特征与脑电图或心率变异性(HRV)和SpO2水平持续时间的特征子集相结合。结果表明,仅使用HRV和SpO2的计算成本较低的特征,曲线下面积为0.91,OSA的严重程度分类准确率为83.97%。对于呼吸暂停-低通气指数的估计,仅使用排名HRV和SpO2特征,测试集中RMSE = 4.6, r²值= 0.71的准确性已经实现。Wilcoxon-signed-rank检验表明,在2.5年以上的疾病进展中,所选择的特征值有显著变化(p < 0.05)。该方法有可能与边缘计算集成,部署在日常可穿戴设备上。这可能有助于对OSA患者进行初步的严重程度评估、监测和管理,并降低相关的医疗费用以及未经治疗的OSA患病率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Minimalist Method Toward Severity Assessment and Progression Monitoring of Obstructive Sleep Apnea on the Edge
Artificial Intelligence-enabled applications on edge devices have the potential to revolutionize disease detection and monitoring in future smart health (sHealth) systems. In this study, we investigated a minimalist approach for the severity classification, severity estimation, and progression monitoring of obstructive sleep apnea (OSA) in a home environment using wearables. We used the recursive feature elimination technique to select the best feature set of 70 features from a total of 200 features extracted from polysomnogram. We used a multi-layer perceptron model to investigate the performance of OSA severity classification with all the ranked features to a subset of features available from either Electroencephalography or Heart Rate Variability (HRV) and time duration of SpO2 level. The results indicate that using only computationally inexpensive features from HRV and SpO2, an area under the curve of 0.91 and an accuracy of 83.97% can be achieved for the severity classification of OSA. For estimation of the apnea-hypopnea index, the accuracy of RMSE = 4.6 and R-squared value = 0.71 have been achieved in the test set using only ranked HRV and SpO2 features. The Wilcoxon-signed-rank test indicates a significant change (p < 0.05) in the selected feature values for a progression in the disease over 2.5 years. The method has the potential for integration with edge computing for deployment on everyday wearables. This may facilitate the preliminary severity estimation, monitoring, and management of OSA patients and reduce associated healthcare costs as well as the prevalence of untreated OSA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introduction to the Special Issue on Internet-of-Medical-Things iNAP: A Hybrid Approach for NonInvasive Anemia-Polycythemia Detection in the IoMT Improving Early Prognosis of Dementia Using Machine Learning Methods Pervasive Pose Estimation for Fall Detection Automatic Extraction of Nested Entities in Clinical Referrals in Spanish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1