软件估计中参数修剪方法的评价

Thu D. Tran, Vu Nguyen, Thong Truong, C. Tran, Phu Le
{"title":"软件估计中参数修剪方法的评价","authors":"Thu D. Tran, Vu Nguyen, Thong Truong, C. Tran, Phu Le","doi":"10.1145/3345629.3345633","DOIUrl":null,"url":null,"abstract":"Model-based estimation often uses impact factors and historical data to predict the effort of new projects. Estimation accuracy of this approach is highly dependent on how well impact factors are selected. This paper comparatively assesses six methods for prune parameters of effort estimation models, including Stepwise regression, Lasso, constrained regression, GRASP, Tabu search, and PCA. Four data sets were used for evaluation, showing that estimation accuracy varies among the methods but no method consistently outperforms the rest. Stepwise regression prunes estimation model parameters the most while it does not sacrifice much estimation performance. Our study provides further evidence to support the use of Stepwise regression for selecting factors in effort estimation.","PeriodicalId":424201,"journal":{"name":"Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics in Software Engineering","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Evaluation of Parameter Pruning Approaches for Software Estimation\",\"authors\":\"Thu D. Tran, Vu Nguyen, Thong Truong, C. Tran, Phu Le\",\"doi\":\"10.1145/3345629.3345633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-based estimation often uses impact factors and historical data to predict the effort of new projects. Estimation accuracy of this approach is highly dependent on how well impact factors are selected. This paper comparatively assesses six methods for prune parameters of effort estimation models, including Stepwise regression, Lasso, constrained regression, GRASP, Tabu search, and PCA. Four data sets were used for evaluation, showing that estimation accuracy varies among the methods but no method consistently outperforms the rest. Stepwise regression prunes estimation model parameters the most while it does not sacrifice much estimation performance. Our study provides further evidence to support the use of Stepwise regression for selecting factors in effort estimation.\",\"PeriodicalId\":424201,\"journal\":{\"name\":\"Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics in Software Engineering\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics in Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3345629.3345633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics in Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3345629.3345633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于模型的评估通常使用影响因素和历史数据来预测新项目的工作量。该方法的估计精度高度依赖于影响因子的选择。比较评价了逐步回归、Lasso、约束回归、GRASP、禁忌搜索和主成分分析等6种方法对工作量估计模型参数的修剪。我们使用了四个数据集进行评估,结果表明,不同方法的估计精度各不相同,但没有一种方法始终优于其他方法。逐步回归在不牺牲估计性能的前提下,对估计模型参数的删减最多。我们的研究提供了进一步的证据来支持逐步回归在努力估计中选择因素的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Evaluation of Parameter Pruning Approaches for Software Estimation
Model-based estimation often uses impact factors and historical data to predict the effort of new projects. Estimation accuracy of this approach is highly dependent on how well impact factors are selected. This paper comparatively assesses six methods for prune parameters of effort estimation models, including Stepwise regression, Lasso, constrained regression, GRASP, Tabu search, and PCA. Four data sets were used for evaluation, showing that estimation accuracy varies among the methods but no method consistently outperforms the rest. Stepwise regression prunes estimation model parameters the most while it does not sacrifice much estimation performance. Our study provides further evidence to support the use of Stepwise regression for selecting factors in effort estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics in Software Engineering An Evaluation of Parameter Pruning Approaches for Software Estimation Which Refactoring Reduces Bug Rate? Reviewer Recommendation using Software Artifact Traceability Graphs Prioritizing automated user interface tests using reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1