Thu D. Tran, Vu Nguyen, Thong Truong, C. Tran, Phu Le
{"title":"软件估计中参数修剪方法的评价","authors":"Thu D. Tran, Vu Nguyen, Thong Truong, C. Tran, Phu Le","doi":"10.1145/3345629.3345633","DOIUrl":null,"url":null,"abstract":"Model-based estimation often uses impact factors and historical data to predict the effort of new projects. Estimation accuracy of this approach is highly dependent on how well impact factors are selected. This paper comparatively assesses six methods for prune parameters of effort estimation models, including Stepwise regression, Lasso, constrained regression, GRASP, Tabu search, and PCA. Four data sets were used for evaluation, showing that estimation accuracy varies among the methods but no method consistently outperforms the rest. Stepwise regression prunes estimation model parameters the most while it does not sacrifice much estimation performance. Our study provides further evidence to support the use of Stepwise regression for selecting factors in effort estimation.","PeriodicalId":424201,"journal":{"name":"Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics in Software Engineering","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Evaluation of Parameter Pruning Approaches for Software Estimation\",\"authors\":\"Thu D. Tran, Vu Nguyen, Thong Truong, C. Tran, Phu Le\",\"doi\":\"10.1145/3345629.3345633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-based estimation often uses impact factors and historical data to predict the effort of new projects. Estimation accuracy of this approach is highly dependent on how well impact factors are selected. This paper comparatively assesses six methods for prune parameters of effort estimation models, including Stepwise regression, Lasso, constrained regression, GRASP, Tabu search, and PCA. Four data sets were used for evaluation, showing that estimation accuracy varies among the methods but no method consistently outperforms the rest. Stepwise regression prunes estimation model parameters the most while it does not sacrifice much estimation performance. Our study provides further evidence to support the use of Stepwise regression for selecting factors in effort estimation.\",\"PeriodicalId\":424201,\"journal\":{\"name\":\"Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics in Software Engineering\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics in Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3345629.3345633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics in Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3345629.3345633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Evaluation of Parameter Pruning Approaches for Software Estimation
Model-based estimation often uses impact factors and historical data to predict the effort of new projects. Estimation accuracy of this approach is highly dependent on how well impact factors are selected. This paper comparatively assesses six methods for prune parameters of effort estimation models, including Stepwise regression, Lasso, constrained regression, GRASP, Tabu search, and PCA. Four data sets were used for evaluation, showing that estimation accuracy varies among the methods but no method consistently outperforms the rest. Stepwise regression prunes estimation model parameters the most while it does not sacrifice much estimation performance. Our study provides further evidence to support the use of Stepwise regression for selecting factors in effort estimation.