利用紫山药提取物作为神经网络监测淡水新鲜的标签

Siswoyo Siswoyo, Anisah Mega Andini, Dea Amelia, Aisyah Deri Ayu Tungga Safitri, Yuant Tiandho
{"title":"利用紫山药提取物作为神经网络监测淡水新鲜的标签","authors":"Siswoyo Siswoyo, Anisah Mega Andini, Dea Amelia, Aisyah Deri Ayu Tungga Safitri, Yuant Tiandho","doi":"10.22437/jop.v7i1.14500","DOIUrl":null,"url":null,"abstract":"The main weakness in shrimp marketing is the perishable food nature of shrimp. Generally, people identify the freshness of shrimp by direct observation. However, it will be difficult to detect the freshness of shrimp if it is marketed in a closed container. In this study, a label indicator of purple sweet potato will be made to detect the freshness of shrimp. The increase in the efficiency of indicator readings is carried out using a neural network algorithm. The results of the sensitivity test showed that the label indicator of purple sweet potato extract was sensitive to the presence of ammonia.Through a comparison between the storage time of shrimp and the organoleptic quality of shrimp, it is known that the quality of shrimp is divided into four classes, namely: (i) \"Very fresh\" marked with a solid red color (ii) \"Fresh marked with a deep blue color (iii) \"not fresh marked with a dark red color. gray and (iv) “very unrefreshing marked with a faded brown color. Through label indicator image classification using a neural network algorithm, from 73 training data obtained an accuracy rate of 95.89% and a precision of 92%.","PeriodicalId":415382,"journal":{"name":"JOURNAL ONLINE OF PHYSICS","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PEMANFAATAN EKSTRAK UBI UNGU SEBAGAI INDIKATOR LABEL DALAM PEMANTAUAN KESEGARAN UDANG MENGUNAKAN NEURAL NETWORK\",\"authors\":\"Siswoyo Siswoyo, Anisah Mega Andini, Dea Amelia, Aisyah Deri Ayu Tungga Safitri, Yuant Tiandho\",\"doi\":\"10.22437/jop.v7i1.14500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main weakness in shrimp marketing is the perishable food nature of shrimp. Generally, people identify the freshness of shrimp by direct observation. However, it will be difficult to detect the freshness of shrimp if it is marketed in a closed container. In this study, a label indicator of purple sweet potato will be made to detect the freshness of shrimp. The increase in the efficiency of indicator readings is carried out using a neural network algorithm. The results of the sensitivity test showed that the label indicator of purple sweet potato extract was sensitive to the presence of ammonia.Through a comparison between the storage time of shrimp and the organoleptic quality of shrimp, it is known that the quality of shrimp is divided into four classes, namely: (i) \\\"Very fresh\\\" marked with a solid red color (ii) \\\"Fresh marked with a deep blue color (iii) \\\"not fresh marked with a dark red color. gray and (iv) “very unrefreshing marked with a faded brown color. Through label indicator image classification using a neural network algorithm, from 73 training data obtained an accuracy rate of 95.89% and a precision of 92%.\",\"PeriodicalId\":415382,\"journal\":{\"name\":\"JOURNAL ONLINE OF PHYSICS\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL ONLINE OF PHYSICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22437/jop.v7i1.14500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL ONLINE OF PHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22437/jop.v7i1.14500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虾营销的主要弱点是虾的易腐食品性质。一般来说,人们通过直接观察来判断虾的新鲜度。然而,如果虾在封闭的容器中销售,将很难检测其新鲜度。本研究将制作紫甘薯的标签指标来检测虾的新鲜度。利用神经网络算法提高了指标读数的效率。敏感性试验结果表明,紫甘薯浸膏的标签指示剂对氨的存在敏感。通过对虾贮藏时间与对虾感官品质的比较可知,对虾的品质可分为四类,即:(i)以纯红色标记的“非常新鲜”(ii)"新鲜的深蓝色标记(iii)"不是新鲜的,有深红色的标记。灰色和(iv)“非常不清新,带有褪色的棕色。”通过使用神经网络算法对标签指标图像进行分类,从73个训练数据中获得准确率95.89%,精密度92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PEMANFAATAN EKSTRAK UBI UNGU SEBAGAI INDIKATOR LABEL DALAM PEMANTAUAN KESEGARAN UDANG MENGUNAKAN NEURAL NETWORK
The main weakness in shrimp marketing is the perishable food nature of shrimp. Generally, people identify the freshness of shrimp by direct observation. However, it will be difficult to detect the freshness of shrimp if it is marketed in a closed container. In this study, a label indicator of purple sweet potato will be made to detect the freshness of shrimp. The increase in the efficiency of indicator readings is carried out using a neural network algorithm. The results of the sensitivity test showed that the label indicator of purple sweet potato extract was sensitive to the presence of ammonia.Through a comparison between the storage time of shrimp and the organoleptic quality of shrimp, it is known that the quality of shrimp is divided into four classes, namely: (i) "Very fresh" marked with a solid red color (ii) "Fresh marked with a deep blue color (iii) "not fresh marked with a dark red color. gray and (iv) “very unrefreshing marked with a faded brown color. Through label indicator image classification using a neural network algorithm, from 73 training data obtained an accuracy rate of 95.89% and a precision of 92%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STUDY ON DOPPLER EFFECT BASED ON FREQUENCY AND VELOCITY OF SOUND SOURCE IN THE WATERS PENGEMBANGAN ALAT UKUR KEMATANGAN KOMPOS BERBASIS ARDUINO ATMEGA328 KARAKTERISASI NATURAL HIDROKSIAPATIT DARI TULANG IKAN LELE (Calarias batracus) ANALYSIS OF ACTIVATED CARBON (PETUNG BAMBOO)/LATEX COMPOSITE AS X-BAND WAVE-ABSORBING MATERIAL ANALISIS SIFAT MEKANIK LIST GYPSUM BERBASIS SERAT RAMI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1