{"title":"尺度不变关键点检测器","authors":"Tao Zhou","doi":"10.1109/SPAC.2014.6982695","DOIUrl":null,"url":null,"abstract":"We propose a novel approach for detecting keypoints invariant to scale changes based on M-wavelet theory. The theory description and detecting process of our approach are presented The comparative evaluation of different detectors shows our approach can provides a competent performance in rotation invariant, scale invariant, illumination invariant and noiseproof. In terms of scale changes, our proposed approach improves keypoint repeatability by 2%~10% compared with scale invariant feature transform (SIFT), speeded up robust features (SURF), Harris-Laplace, Hessian-Laplace.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A scale invariant keypoints detector\",\"authors\":\"Tao Zhou\",\"doi\":\"10.1109/SPAC.2014.6982695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel approach for detecting keypoints invariant to scale changes based on M-wavelet theory. The theory description and detecting process of our approach are presented The comparative evaluation of different detectors shows our approach can provides a competent performance in rotation invariant, scale invariant, illumination invariant and noiseproof. In terms of scale changes, our proposed approach improves keypoint repeatability by 2%~10% compared with scale invariant feature transform (SIFT), speeded up robust features (SURF), Harris-Laplace, Hessian-Laplace.\",\"PeriodicalId\":326246,\"journal\":{\"name\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2014.6982695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于m -小波理论的关键点不随尺度变化的检测方法。给出了该方法的理论描述和检测过程,并对不同检测器进行了比较评价,结果表明该方法具有良好的旋转不变性、尺度不变性、光照不变性和噪声不变性。在尺度变化方面,与尺度不变特征变换(SIFT)、加速鲁棒特征变换(SURF)、Harris-Laplace、hessia - laplace等方法相比,关键点可重复性提高2%~10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A scale invariant keypoints detector
We propose a novel approach for detecting keypoints invariant to scale changes based on M-wavelet theory. The theory description and detecting process of our approach are presented The comparative evaluation of different detectors shows our approach can provides a competent performance in rotation invariant, scale invariant, illumination invariant and noiseproof. In terms of scale changes, our proposed approach improves keypoint repeatability by 2%~10% compared with scale invariant feature transform (SIFT), speeded up robust features (SURF), Harris-Laplace, Hessian-Laplace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new GPR image de-nosing method based on BEMD Design and implementation of one vertical video search engine Multi-scale sparse denoising model based on non-separable wavelet Dollar bill denomination recognition algorithm based on local texture feature Class specific dictionary learning for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1