iith - ilsc印度语言识别语音数据库

R. Vuddagiri, K. Gurugubelli, P. Jain, Hari Krishna Vydana, A. Vuppala
{"title":"iith - ilsc印度语言识别语音数据库","authors":"R. Vuddagiri, K. Gurugubelli, P. Jain, Hari Krishna Vydana, A. Vuppala","doi":"10.21437/SLTU.2018-12","DOIUrl":null,"url":null,"abstract":"This work focuses on the development of speech data comprising 23 Indian languages for developing language identification (LID) systems. Large data is a pre-requisite for developing state-of-the-art LID systems. With this motivation, the task of developing multilingual speech corpus for Indian languages has been initiated. This paper describes the composition of the data and the performances of various LID systems developed using this data. In this paper, Mel frequency cepstral feature representation is used for language identification. In this work, various state-of-the-art LID systems are developed using i-vectors, deep neural network (DNN) and deep neural network with attention (DNN-WA) models. The performance of the LID system is observed in terms of the equal error rate for i-vector, DNN and DNN-WA is 17.77%, 17.95%, and 15.18% respec-tively. Deep neural network with attention model shows a better performance over i-vector and DNN models.","PeriodicalId":190269,"journal":{"name":"Workshop on Spoken Language Technologies for Under-resourced Languages","volume":"86 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"IIITH-ILSC Speech Database for Indain Language Identification\",\"authors\":\"R. Vuddagiri, K. Gurugubelli, P. Jain, Hari Krishna Vydana, A. Vuppala\",\"doi\":\"10.21437/SLTU.2018-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work focuses on the development of speech data comprising 23 Indian languages for developing language identification (LID) systems. Large data is a pre-requisite for developing state-of-the-art LID systems. With this motivation, the task of developing multilingual speech corpus for Indian languages has been initiated. This paper describes the composition of the data and the performances of various LID systems developed using this data. In this paper, Mel frequency cepstral feature representation is used for language identification. In this work, various state-of-the-art LID systems are developed using i-vectors, deep neural network (DNN) and deep neural network with attention (DNN-WA) models. The performance of the LID system is observed in terms of the equal error rate for i-vector, DNN and DNN-WA is 17.77%, 17.95%, and 15.18% respec-tively. Deep neural network with attention model shows a better performance over i-vector and DNN models.\",\"PeriodicalId\":190269,\"journal\":{\"name\":\"Workshop on Spoken Language Technologies for Under-resourced Languages\",\"volume\":\"86 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Spoken Language Technologies for Under-resourced Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/SLTU.2018-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Spoken Language Technologies for Under-resourced Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SLTU.2018-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

这项工作的重点是开发23种印度语言的语音数据,用于开发语言识别(LID)系统。大数据是开发最先进的LID系统的先决条件。基于这一动机,印度语言多语言语料库的开发工作已经启动。本文介绍了这些数据的组成以及利用这些数据开发的各种LID系统的性能。本文将Mel频率倒谱特征表示用于语言识别。在这项工作中,使用i向量、深度神经网络(DNN)和深度神经网络与注意力(DNN- wa)模型开发了各种最先进的LID系统。从i-vector、DNN和DNN- wa的等错误率分别为17.77%、17.95%和15.18%来看,LID系统的性能。与i-vector和DNN模型相比,具有注意力模型的深度神经网络表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IIITH-ILSC Speech Database for Indain Language Identification
This work focuses on the development of speech data comprising 23 Indian languages for developing language identification (LID) systems. Large data is a pre-requisite for developing state-of-the-art LID systems. With this motivation, the task of developing multilingual speech corpus for Indian languages has been initiated. This paper describes the composition of the data and the performances of various LID systems developed using this data. In this paper, Mel frequency cepstral feature representation is used for language identification. In this work, various state-of-the-art LID systems are developed using i-vectors, deep neural network (DNN) and deep neural network with attention (DNN-WA) models. The performance of the LID system is observed in terms of the equal error rate for i-vector, DNN and DNN-WA is 17.77%, 17.95%, and 15.18% respec-tively. Deep neural network with attention model shows a better performance over i-vector and DNN models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Corpus of the Sorani Kurdish Folkloric Lyrics A Sentiment Analysis Dataset for Code-Mixed Malayalam-English Corpus Creation for Sentiment Analysis in Code-Mixed Tamil-English Text Text Normalization for Bangla, Khmer, Nepali, Javanese, Sinhala and Sundanese Text-to-Speech Systems Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1