O. Machidon, F. Sandu, Corneliu Zaharia, P. Cotfas, D. Cotfas
{"title":"用于云应用的远程SoC/FPGA平台配置","authors":"O. Machidon, F. Sandu, Corneliu Zaharia, P. Cotfas, D. Cotfas","doi":"10.1109/OPTIM.2014.6850986","DOIUrl":null,"url":null,"abstract":"The growing development of Cloud Computing raised the need of making hardware available “as a Service”. Reconfigurable hardware - like FPGA (Field Programmable Gate Arrays) - makes the ideal candidate for being integrated into Cloud systems due to their high flexibility and scalability. This work describes the design and implementation of a remote reconfigurable FPGA-based SoC (System on Chip) with a Service-oriented configuration interface over the Internet, and underlines several solutions in order to meet the specific challenges raised by this type of integration. The FPGA board (that can be at a remote location) is configured by a Web Service linked to a JSP (JavaServer Pages) Web-page where the user can provide a bitstream configuration file for the Programmable Logic (PL). On the SoC/FPGA board, dedicated software has been developed to run on the embedded Processing System (PS), managing the downloaded bitstreams and configuring the PL.","PeriodicalId":298237,"journal":{"name":"2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Remote SoC/FPGA platform configuration for cloud applications\",\"authors\":\"O. Machidon, F. Sandu, Corneliu Zaharia, P. Cotfas, D. Cotfas\",\"doi\":\"10.1109/OPTIM.2014.6850986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing development of Cloud Computing raised the need of making hardware available “as a Service”. Reconfigurable hardware - like FPGA (Field Programmable Gate Arrays) - makes the ideal candidate for being integrated into Cloud systems due to their high flexibility and scalability. This work describes the design and implementation of a remote reconfigurable FPGA-based SoC (System on Chip) with a Service-oriented configuration interface over the Internet, and underlines several solutions in order to meet the specific challenges raised by this type of integration. The FPGA board (that can be at a remote location) is configured by a Web Service linked to a JSP (JavaServer Pages) Web-page where the user can provide a bitstream configuration file for the Programmable Logic (PL). On the SoC/FPGA board, dedicated software has been developed to run on the embedded Processing System (PS), managing the downloaded bitstreams and configuring the PL.\",\"PeriodicalId\":298237,\"journal\":{\"name\":\"2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OPTIM.2014.6850986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OPTIM.2014.6850986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Remote SoC/FPGA platform configuration for cloud applications
The growing development of Cloud Computing raised the need of making hardware available “as a Service”. Reconfigurable hardware - like FPGA (Field Programmable Gate Arrays) - makes the ideal candidate for being integrated into Cloud systems due to their high flexibility and scalability. This work describes the design and implementation of a remote reconfigurable FPGA-based SoC (System on Chip) with a Service-oriented configuration interface over the Internet, and underlines several solutions in order to meet the specific challenges raised by this type of integration. The FPGA board (that can be at a remote location) is configured by a Web Service linked to a JSP (JavaServer Pages) Web-page where the user can provide a bitstream configuration file for the Programmable Logic (PL). On the SoC/FPGA board, dedicated software has been developed to run on the embedded Processing System (PS), managing the downloaded bitstreams and configuring the PL.