T5W:用于不平衡文本分类的过采样释义方法

A. Patil, Shreekant Jere, Reshma Ram, Shruthi Srinarasi
{"title":"T5W:用于不平衡文本分类的过采样释义方法","authors":"A. Patil, Shreekant Jere, Reshma Ram, Shruthi Srinarasi","doi":"10.1109/CONECCT55679.2022.9865812","DOIUrl":null,"url":null,"abstract":"Imbalanced datasets are datasets with one or more underrepresented classes when compared to other classes. Such datasets pose problems during classification due to the lack of sufficient data to train minority classes. To handle this imbalance in text data, this paper proposes an oversampling technique that uses a combination of the T5 Transformer and the WordNet corpus to balance the dataset by paraphrasing text in minority classes. The WordNet corpus is used to extract synonyms of \"relevant\" words. Substituting these synonyms in the sentences augments the database by increasing data in minority classes. Combining these augmented sentences with the paraphrased sentences extracted using the T5 Transformer results in a larger and balanced dataset. Standard classifiers such as the Logistic Regression algorithm are used to compare the performance metrics before and after resampling the dataset. The results show that oversampling using the proposed approach significantly improves the performance of text classification algorithms. To automate the task of oversampling using a paraphrasing tool, the integration of the model with a Robotic Process Automation tool is detailed.","PeriodicalId":380005,"journal":{"name":"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"T5W: A Paraphrasing Approach to Oversampling for Imbalanced Text Classification\",\"authors\":\"A. Patil, Shreekant Jere, Reshma Ram, Shruthi Srinarasi\",\"doi\":\"10.1109/CONECCT55679.2022.9865812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imbalanced datasets are datasets with one or more underrepresented classes when compared to other classes. Such datasets pose problems during classification due to the lack of sufficient data to train minority classes. To handle this imbalance in text data, this paper proposes an oversampling technique that uses a combination of the T5 Transformer and the WordNet corpus to balance the dataset by paraphrasing text in minority classes. The WordNet corpus is used to extract synonyms of \\\"relevant\\\" words. Substituting these synonyms in the sentences augments the database by increasing data in minority classes. Combining these augmented sentences with the paraphrased sentences extracted using the T5 Transformer results in a larger and balanced dataset. Standard classifiers such as the Logistic Regression algorithm are used to compare the performance metrics before and after resampling the dataset. The results show that oversampling using the proposed approach significantly improves the performance of text classification algorithms. To automate the task of oversampling using a paraphrasing tool, the integration of the model with a Robotic Process Automation tool is detailed.\",\"PeriodicalId\":380005,\"journal\":{\"name\":\"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONECCT55679.2022.9865812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT55679.2022.9865812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

不平衡数据集是指与其他类相比,具有一个或多个代表性不足的类的数据集。由于缺乏足够的数据来训练少数类,这些数据集在分类过程中会产生问题。为了处理文本数据中的这种不平衡,本文提出了一种过采样技术,该技术使用T5 Transformer和WordNet语料库的组合,通过在少数类中解释文本来平衡数据集。WordNet语料库用于提取“相关”词的同义词。在句子中替换这些同义词可以通过增加少数族裔类别的数据来扩充数据库。将这些增强的句子与使用T5 Transformer提取的意译句子结合起来,可以得到一个更大、更平衡的数据集。使用诸如逻辑回归算法之类的标准分类器来比较重新采样数据集之前和之后的性能指标。结果表明,使用该方法进行过采样可以显著提高文本分类算法的性能。为了使用释义工具自动化过采样任务,详细介绍了模型与机器人过程自动化工具的集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
T5W: A Paraphrasing Approach to Oversampling for Imbalanced Text Classification
Imbalanced datasets are datasets with one or more underrepresented classes when compared to other classes. Such datasets pose problems during classification due to the lack of sufficient data to train minority classes. To handle this imbalance in text data, this paper proposes an oversampling technique that uses a combination of the T5 Transformer and the WordNet corpus to balance the dataset by paraphrasing text in minority classes. The WordNet corpus is used to extract synonyms of "relevant" words. Substituting these synonyms in the sentences augments the database by increasing data in minority classes. Combining these augmented sentences with the paraphrased sentences extracted using the T5 Transformer results in a larger and balanced dataset. Standard classifiers such as the Logistic Regression algorithm are used to compare the performance metrics before and after resampling the dataset. The results show that oversampling using the proposed approach significantly improves the performance of text classification algorithms. To automate the task of oversampling using a paraphrasing tool, the integration of the model with a Robotic Process Automation tool is detailed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Signal Integrity Issues in FPGA based multi-motor microstepping Drives Organ Bank Based on Blockchain A Novel Deep Architecture for Multi-Task Crowd Analysis Convolutional Neural Network-based ECG Classification on PYNQ-Z2 Framework Improved Electric Vehicle Digital Twin Performance Incorporating Detailed Lithium-ion Battery Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1