{"title":"信号产生采用切比雪夫多项式的脉冲压缩与小的相对旁瓣电平","authors":"Ankur Thakur, S. Talluri, D. Saini","doi":"10.1109/SSPS.2017.8071576","DOIUrl":null,"url":null,"abstract":"The theme of this paper is to present the improvement in the peak side-lobe levels (PSL) and time-bandwidth product with Chebyshev polynomial. This PSL behavior is observed by the matched filter (MF) response, which contains main-lobe width as well as side-lobes. Here to get a better reduction in the side-lobes, Chebyshev polynomials are modified by using zero-crossing there by getting the positive and negative pulse. Here two cases have been considered, in first ordinary Chebyshev polynomial are analyzed, second is a modification in the cycles of Chebyshev polynomial is incorporated. After this the smallest duration of the pulse has been used in determining the optimal duration which has the smallest mean square error (MSE) between the number of pulses incorporated and original signal. This is giving a much larger signal with less PSL by reducing the search domain considerably. This new method tries to implement a side lobe level reduction technique. All of the mentioned procedure is carried out by mathematical equations and simulation verification.","PeriodicalId":382353,"journal":{"name":"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)","volume":"448 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Signal generation employing Chebyshev polynomial for pulse compression with small relative side-lobe level\",\"authors\":\"Ankur Thakur, S. Talluri, D. Saini\",\"doi\":\"10.1109/SSPS.2017.8071576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theme of this paper is to present the improvement in the peak side-lobe levels (PSL) and time-bandwidth product with Chebyshev polynomial. This PSL behavior is observed by the matched filter (MF) response, which contains main-lobe width as well as side-lobes. Here to get a better reduction in the side-lobes, Chebyshev polynomials are modified by using zero-crossing there by getting the positive and negative pulse. Here two cases have been considered, in first ordinary Chebyshev polynomial are analyzed, second is a modification in the cycles of Chebyshev polynomial is incorporated. After this the smallest duration of the pulse has been used in determining the optimal duration which has the smallest mean square error (MSE) between the number of pulses incorporated and original signal. This is giving a much larger signal with less PSL by reducing the search domain considerably. This new method tries to implement a side lobe level reduction technique. All of the mentioned procedure is carried out by mathematical equations and simulation verification.\",\"PeriodicalId\":382353,\"journal\":{\"name\":\"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)\",\"volume\":\"448 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSPS.2017.8071576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSPS.2017.8071576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Signal generation employing Chebyshev polynomial for pulse compression with small relative side-lobe level
The theme of this paper is to present the improvement in the peak side-lobe levels (PSL) and time-bandwidth product with Chebyshev polynomial. This PSL behavior is observed by the matched filter (MF) response, which contains main-lobe width as well as side-lobes. Here to get a better reduction in the side-lobes, Chebyshev polynomials are modified by using zero-crossing there by getting the positive and negative pulse. Here two cases have been considered, in first ordinary Chebyshev polynomial are analyzed, second is a modification in the cycles of Chebyshev polynomial is incorporated. After this the smallest duration of the pulse has been used in determining the optimal duration which has the smallest mean square error (MSE) between the number of pulses incorporated and original signal. This is giving a much larger signal with less PSL by reducing the search domain considerably. This new method tries to implement a side lobe level reduction technique. All of the mentioned procedure is carried out by mathematical equations and simulation verification.