基于最小化完工时间的改进Cat群优化云数据中心高效任务调度

Danlami Gabi, A. Ismail, Nasiru Muhammad Dankolo
{"title":"基于最小化完工时间的改进Cat群优化云数据中心高效任务调度","authors":"Danlami Gabi, A. Ismail, Nasiru Muhammad Dankolo","doi":"10.1145/3341069.3341074","DOIUrl":null,"url":null,"abstract":"Inefficient scheduling of tasks on cloud datacenter resources can result in underutilization leading to poor revenue generation. To show efficient tasks scheduling on cloud datacenter, the makespan time needs to be minimized. In this paper, we introduced a conventional Cat Swarm Optimization (CSO) task scheduling technique as an ideal solution. Although the CSO is promising in terms of convergence speed, certain improvements are required to make it efficient for cloud task scheduling since it suffers entrapment at the local search. To overcome this, we incorporated a Linear Descending Inertia Weight (LDIW) equation at the local search of the CSO technique. This led to better convergence speed and possibly ensured efficient tasks mapping on virtual resources that minimizes the makespan time. The proposed CSO-LDIW technique is implemented on CloudSim simulator tool with five (5) heterogeneous Virtual Machines (VMs) under consideration to show its performance. The results of the simulation indicate that a comparison with that of the Particle Swarm Optimization-Linear Descending Inertia Weight (PSO-LDIW) and the CSO shows that our proposed CSO-LDIW can schedule task effectively on cloud resource with a promising makespan time.","PeriodicalId":411198,"journal":{"name":"Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference","volume":"273 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Minimized Makespan Based Improved Cat Swarm Optimization for Efficient Task Scheduling in Cloud Datacenter\",\"authors\":\"Danlami Gabi, A. Ismail, Nasiru Muhammad Dankolo\",\"doi\":\"10.1145/3341069.3341074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inefficient scheduling of tasks on cloud datacenter resources can result in underutilization leading to poor revenue generation. To show efficient tasks scheduling on cloud datacenter, the makespan time needs to be minimized. In this paper, we introduced a conventional Cat Swarm Optimization (CSO) task scheduling technique as an ideal solution. Although the CSO is promising in terms of convergence speed, certain improvements are required to make it efficient for cloud task scheduling since it suffers entrapment at the local search. To overcome this, we incorporated a Linear Descending Inertia Weight (LDIW) equation at the local search of the CSO technique. This led to better convergence speed and possibly ensured efficient tasks mapping on virtual resources that minimizes the makespan time. The proposed CSO-LDIW technique is implemented on CloudSim simulator tool with five (5) heterogeneous Virtual Machines (VMs) under consideration to show its performance. The results of the simulation indicate that a comparison with that of the Particle Swarm Optimization-Linear Descending Inertia Weight (PSO-LDIW) and the CSO shows that our proposed CSO-LDIW can schedule task effectively on cloud resource with a promising makespan time.\",\"PeriodicalId\":411198,\"journal\":{\"name\":\"Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference\",\"volume\":\"273 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341069.3341074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341069.3341074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

云数据中心资源上的任务调度效率低下可能导致利用率不足,从而导致收入减少。为了在云数据中心上显示高效的任务调度,需要最小化makespan时间。本文介绍了一种传统的Cat Swarm Optimization (CSO)任务调度技术作为理想的解决方案。尽管CSO在收敛速度方面很有希望,但由于它在本地搜索时受到干扰,因此需要进行某些改进以使其在云任务调度方面更有效。为了克服这个问题,我们在CSO技术的局部搜索中引入了线性下降惯性权重(LDIW)方程。这导致了更好的收敛速度,并可能确保在虚拟资源上有效地映射任务,从而最大限度地减少最大时间。提出的CSO-LDIW技术在CloudSim模拟器工具上实现,考虑了5个异构虚拟机(vm)来展示其性能。仿真结果表明,与粒子群优化-线性下降惯性权算法(PSO-LDIW)和粒子群优化算法(CSO)的比较表明,我们提出的粒子群优化-线性下降惯性权算法(PSO-LDIW)可以有效地在云资源上调度任务,并具有良好的最大完成时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimized Makespan Based Improved Cat Swarm Optimization for Efficient Task Scheduling in Cloud Datacenter
Inefficient scheduling of tasks on cloud datacenter resources can result in underutilization leading to poor revenue generation. To show efficient tasks scheduling on cloud datacenter, the makespan time needs to be minimized. In this paper, we introduced a conventional Cat Swarm Optimization (CSO) task scheduling technique as an ideal solution. Although the CSO is promising in terms of convergence speed, certain improvements are required to make it efficient for cloud task scheduling since it suffers entrapment at the local search. To overcome this, we incorporated a Linear Descending Inertia Weight (LDIW) equation at the local search of the CSO technique. This led to better convergence speed and possibly ensured efficient tasks mapping on virtual resources that minimizes the makespan time. The proposed CSO-LDIW technique is implemented on CloudSim simulator tool with five (5) heterogeneous Virtual Machines (VMs) under consideration to show its performance. The results of the simulation indicate that a comparison with that of the Particle Swarm Optimization-Linear Descending Inertia Weight (PSO-LDIW) and the CSO shows that our proposed CSO-LDIW can schedule task effectively on cloud resource with a promising makespan time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anomaly Detection Method for Chiller System of Supercomputer A Strategy Integrating Iterative Filtering and Convolution Neural Network for Time Series Feature Extraction Multi-attending Memory Network for Modeling Multi-turn Dialogue Time-varying Target Characteristic Analysis of Dual Stealth Aircraft Formation Bank Account Abnormal Transaction Recognition Based on Relief Algorithm and BalanceCascade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1