视频重定向的快速智能裁剪方法和数据集

Konstantinos Apostolidis, V. Mezaris
{"title":"视频重定向的快速智能裁剪方法和数据集","authors":"Konstantinos Apostolidis, V. Mezaris","doi":"10.1109/ICIP42928.2021.9506390","DOIUrl":null,"url":null,"abstract":"In this paper a method that re-targets a video to a different aspect ratio using cropping is presented. We argue that cropping methods are more suitable for video aspect ratio transformation when the minimization of semantic distortions is a prerequisite. For our method, we utilize visual saliency to find the image regions of attention, and we employ a filtering-through-clustering technique to select the main region of focus. We additionally introduce the first publicly available benchmark dataset for video cropping, annotated by 6 human subjects. Experimental evaluation on the introduced dataset shows the competitiveness of our method.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Fast Smart-Cropping Method and Dataset for Video Retargeting\",\"authors\":\"Konstantinos Apostolidis, V. Mezaris\",\"doi\":\"10.1109/ICIP42928.2021.9506390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a method that re-targets a video to a different aspect ratio using cropping is presented. We argue that cropping methods are more suitable for video aspect ratio transformation when the minimization of semantic distortions is a prerequisite. For our method, we utilize visual saliency to find the image regions of attention, and we employ a filtering-through-clustering technique to select the main region of focus. We additionally introduce the first publicly available benchmark dataset for video cropping, annotated by 6 human subjects. Experimental evaluation on the introduced dataset shows the competitiveness of our method.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用裁剪将视频重新定位到不同宽高比的方法。我们认为当语义失真最小化是前提条件时,裁剪方法更适合视频宽高比变换。在我们的方法中,我们利用视觉显著性来寻找图像的关注区域,并采用通过聚类过滤的技术来选择主要的焦点区域。我们还介绍了第一个公开可用的视频裁剪基准数据集,由6名人类受试者注释。对引入数据集的实验评估表明了我们的方法的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fast Smart-Cropping Method and Dataset for Video Retargeting
In this paper a method that re-targets a video to a different aspect ratio using cropping is presented. We argue that cropping methods are more suitable for video aspect ratio transformation when the minimization of semantic distortions is a prerequisite. For our method, we utilize visual saliency to find the image regions of attention, and we employ a filtering-through-clustering technique to select the main region of focus. We additionally introduce the first publicly available benchmark dataset for video cropping, annotated by 6 human subjects. Experimental evaluation on the introduced dataset shows the competitiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1