具有长程反馈的神经网络:稳定动力学设计

R. Braham
{"title":"具有长程反馈的神经网络:稳定动力学设计","authors":"R. Braham","doi":"10.1109/TAI.1996.560462","DOIUrl":null,"url":null,"abstract":"Feedback in neural networks is essential. Without it, true dynamics would be lacking. For this reason, many well known models include feedback connections (e.g. Hopfield, ART, neocognitron). Neural networks with feedback are, however, likely to be unstable if not carefully designed. In this paper, we show how to incorporate long-range feedback in a class of dynamically stable nonlinear neural networks.","PeriodicalId":209171,"journal":{"name":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural networks with long-range feedback: design for stable dynamics\",\"authors\":\"R. Braham\",\"doi\":\"10.1109/TAI.1996.560462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feedback in neural networks is essential. Without it, true dynamics would be lacking. For this reason, many well known models include feedback connections (e.g. Hopfield, ART, neocognitron). Neural networks with feedback are, however, likely to be unstable if not carefully designed. In this paper, we show how to incorporate long-range feedback in a class of dynamically stable nonlinear neural networks.\",\"PeriodicalId\":209171,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1996.560462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1996.560462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

神经网络中的反馈是必不可少的。没有它,就没有真正的动力。由于这个原因,许多著名的模型包括反馈连接(例如Hopfield, ART, neocognitron)。然而,如果设计不当,带有反馈的神经网络很可能不稳定。在本文中,我们展示了如何在一类动态稳定的非线性神经网络中加入远程反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural networks with long-range feedback: design for stable dynamics
Feedback in neural networks is essential. Without it, true dynamics would be lacking. For this reason, many well known models include feedback connections (e.g. Hopfield, ART, neocognitron). Neural networks with feedback are, however, likely to be unstable if not carefully designed. In this paper, we show how to incorporate long-range feedback in a class of dynamically stable nonlinear neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI tools in scheduling problem solving: a solver based on a "well-behaved" restriction of TCSPs A deliberative and reactive diagnosis agent based on logic programming Subdefinite models as a variety of constraint programming Oz Scheduler: a workbench for scheduling problems Automatic scale selection as a pre-processing stage to interpreting real-world data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1